全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

采用UKF建模的实时背景提取和运动阴影检测

DOI: 10.11834/jig.20090524

Keywords: 运动物体检测,背景提取,阴影检测,无偏卡尔曼滤波器

Full-Text   Cite this paper   Add to My Lib

Abstract:

实时运动物体分割是实现智能视频监控和视频交通流量检测等视觉系统的基础。目前,影响运动检测的因素主要有两个方面,一是背景建模的准确性;二是运动阴影的干扰。提出了基于无偏卡尔曼滤波器(UKF)的背景提取和阴影检测方法,构建整体的运动物体检测框架。该方法通过对背景和阴影建模,分别从帧间差分和背景差分两个层次综合分析像素值的动态变化特性,并利用色彩和亮度变化特性检测出运动阴影,最后借助UKF对两个模型参数进行在线更新,实现实时的运动物体分割。与现有算法相比,该方法背景跟踪速度快、运动检测效果好、计算量较小。实验结果证明了该方法的有效性和实用性。

References

[1]  Vass J, Palaniappan K, Zhuang Xin- hua. Automatic spatio- temporal video sequence segmentation [ A ] . In: Proceedings of IEEE International Conference on Image Processing [C] , Chicago, IL, USA, 1998, 958-962.
[2]  Giachetti A, Cappello M, Torre V. Dynamic segmentation of traffic scenes[ A]. in: Proceedings of IEEE Intelligent Vehicle Symposium [C] , Detroit, MI, USA, 1995 , 258-263.
[3]  Stauffer C, Grimson W E L. Adaptive background mixture models for real- time tracking [ A ]. In : Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C], Fort Collins, Colorado, USA, 1999 : 246-252.
[4]  Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance [ A ]. In : Proceedings of the 7th International Conference on Computer Vision [C], Kerkyra, Greece, 1999 : 255-261.
[5]  Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,211 ( 4 ) : 657-662.
[6]  Julier S J, Uhlmann J K. A new extension of the kalman filter to nonlinear systems [A] .In: Proceedings of AeroSense: the llth International Symposium on Aerospace/Defence Sensing, Simulation and Controls [C] , Orlando, FL, USA, 1997 : 182-193.
[7]  Horprasert T, Harwood D, Davis L S. A statistical approach for real- time robust background subtraction and shadow detection [ A ]. In: Proceedings of IEEE Frame Rate Workshop [C] , Kerkyra, Greece, 1999: 1-19.
[8]  Badenas J, Bober M,Pla F. Segmenting traffic scenes from grey level and motion information[J]. Pattern Analysis and Applications,2001, 4(1) : 28-38.
[9]  Koller D, Weber J, Huang T, et al. Towards robust automatic traffic scene analysis in real-time [ A ]. In: Proceedings of International Conference on Pattern Recognition [C] , Jerusalem, Palestine, 1994 :126-131.
[10]  Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ A ]. In : Proceedings of IEEE [ C ] , New York, USA, 2002: 1151-1163.
[11]  Piccardi M, Jan T. Mean- shift background image modeling [ A ]. In : Proceedings of IEEE International Conference on Image Processing [C] , Singapore ,2004 : 3399-3402.
[12]  肖梅 韩崇昭 张雷.一种视频序列的背景提取算法[J].光电工程,2005,23(4):78-81.
[13]  Jaco Vermaak. The Unscented Kalman Filter and its Mixture Version [R]. London,England: University of Cambridge,2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133