全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空间曲率矩不变量的构造及其应用

DOI: 10.11834/jig.20090523

Keywords: 空间曲率,矩不变量,微分几何,模式识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于传统的不变量方法是针对位置坐标进行计算,难以识别形状特征有微小区别的3维目标。为了能方便地识别有微小区别的3维目标,首先利用平均曲率来描述空间曲面的固有特征,并将传统的3维矩不变量和曲率思想相融合,构造出了一类新的矩不变量――空间曲率矩不变量;然后通过归一化过程,证明了这类不变量对平移、旋转和尺度变换具有无关性。实验表明,空间曲率矩不变量方法和传统的方法相比,不仅能够更好地对形状相似的目标进行分类,并能降低运算复杂度。

References

[1]  Campbell R,Flynn P. A survey of free-form object representation and recognition techniques [J]. Computer Vision and Image Understanding,2001 ,81 ( 2 ) : 166-210.
[2]  Zhang D, Lu G. Review of shape representation and description techniques [J]. Pattern Recognition,2004,37 ( 1 ) : 1 - 19.
[3]  Sijbers J,Ceulemans T,Dyek D V. Algorithm for the computation of 3D Fourier descriptors [ A] .In: Proceedings of International Conference on Pattern Recognition [C], Quebec City, Canada,2002, 2: 11-15.
[4]  Nowotni M,Klein R. Shape Retrieval using 3D Zernike descriptors [J]. Computer-Aided Design,2004,36( 11 ) : 1047-1062.
[5]  Zhang D,Hebert M. Harmonic maps and their applications in surface matching[ A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C], Fort Collins, Colorado, USA, 1999 : 2524-2530.
[6]  Osada R, Funkhouser T, Chazelle B, et al. Shape distributions [J] ACM Transactions on Graphics,2002,21 (4) : 807-832.
[7]  Lon C H, Don H S. 3D moment forms: Their construction and application to object identification and positioning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(10) : 1053-1064.
[8]  孙龙祥 程义民.深度图像分析[M].北京:电子工业出版社,1996.
[9]  Besl P J, Ramesh C J. Segmentation through variable-order surface fitting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(2) : 167-192
[10]  Huber D, Kapuria A, Donamukkala R, et al. Parts-based 3D object classification[ A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C] , Washington DC, USA, 2004,2 : 82-89.
[11]  Zhang D, Lu G. Generic Fourier descriptor for shape-based image retrieval[ A]. In: Proceedings of IEEE International Conference on Multimedia and Expo[C] , Lausanne, Switzerland ,2002 : 425-428.
[12]  Sadjadi F, Hall E. Three dimensional moment invariants[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(3) : 127-136.
[13]  Aherne F J,Thacker N A, Rockett P I. Optimal pairwise geometric histograms [ A ]. In : Proceedings of British Machine Vision Conference [C] , University of Essex, UK, 1997:480-490.
[14]  Vemuri B, Mitiche A, Aggarwal J. Curvature- based representation of objects from range data[J]. Image and Vision Computing, 1956, 4(2): 107-114.
[15]  Dubrovin B,Fomenko A, Novikov S. Modern Geometry-methods and Applications (Ⅰ) ( Second Edltlon) [M] . New York, NY, LISA: Springer- Verlag, 1999.
[16]  Alexander G M. N-Dimensional moment invariants and conceptual mathematical theory of recognition N- dimensional solids [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8) : 819-831.
[17]  Besl P J. Surfaces in Range Image Understanding[M]. New York, NY, USA : Springer- Verlag, 1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133