全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊聚类的稳健支撑向量回归机及火焰图像处理

DOI: 10.11834/jig.20090314

Keywords: 离群点,支撑向量回归,模糊聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于离群点会降低支撑向量回归机的性能,因此为了提高支撑向量回归机的图像处理性能,提出了一种具有抗离群点性能的模糊稳健支撑向量回归机(FRSVR),并首先给出了在任意代价函数下支撑向量回归机的求解方法;然后讨论了构建稳健支撑向量机的代价函数所需的性质,并在此基础上,引入了损失代价函数族;接着根据支撑向量回归机的训练误差,用模糊C均值聚类(FCM)查找离群点;最后通过迭代的方法实现了模糊稳健支撑向量回归机。为了对火焰图像进行有效处理,还将FRSVR算法应用于乳化油燃烧火焰图像处理,以去除火焰图像上的离群点。实验结果表明,FRSVR算法处理图像的性能优于ε-SVR算法和自适应SVR滤镜(ASBF),不仅能有效地查找离群点,而且可去除较大的离群点区域,还能显著的降低离群点的影响,并具有良好的泛化性能。

References

[1]  Smola A J, Scholkopf B. A tutorial on support vector regression [J]. Statistics and Computing, 2004, 14 (3) : 199-222.
[2]  Song Q, Hu W, Xie W. Robust support vector machine with bullet hole image classification [J]. IEEE Transactions on Systems, Man and Cybernetics, 2002, 32(4):440-448.
[3]  Xu Lin-li, Crammer K, Schuurmans D. Robust support vector machine training via convex outlier ablation [ A ]. In : Proceedings of the 21 st National Conference on Artificial Intelligence [C] , Boston, Massachusetts, USA, 2006: 536-546.
[4]  Wang Shi-tong, Zhu Jia-gang, Chung Fu-Lai, et al. Experimental study on parameter choices in norm-r support vector regression machines with noisy input [J]. Soft Computing, 2006, 10(3): 219-223.
[5]  陈晓峰 王士同 曹苏群.自适应误差惩罚支撑向量回归机[J].电子与信息学报,2008,30(2):367-370.
[6]  Zhu Jia-gang, Wang Shi-tong, Wu Xi-sheng, et al. A novel adaptive SVR based filter ASBF for image restoration [J]. Soft Computing, 2006, 10(8) : 665-672.
[7]  段希利 王宗明 王丽娟 等.多股射流瓦斯燃烧器湍流扩散火焰尺度的实验研究[J].热能动力工程,2004,(3):144-147.
[8]  Otsu N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9( 1 ) : 62-66.
[9]  Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithm [J]. Neural Computation, 2000, 12(12) : 1207-1245.
[10]  Weston J, Herbrich R. Adaptive margin support vector machines [ A]. In: Smola A J, Bartlett P, Sch~lkopf B, et al. eds: Advances in Large Margin Classifiers[C], Cambridge, MA, USA: MIT Press, 2000 : 281-295.
[11]  Zhan Yi-qiang, Shen Ding-gang. An adaptive error penalization method for training an efficient and generalized SVM [J] . Pattern Recognition, 2006, 39(3) : 342-350.
[12]  张讲社 郭高.加权稳健支撑向量回归方法[J].计算机学报,2005,28(7):1171-1177.
[13]  Suykens J A K, De Brahanter J, Lukas L, et al. Weighted least squares support vector machine: robustness and sparse approximation [J]. Neurocomputing, 2002, 48(1-4) : 85-105.
[14]  Chuang C C, Su F F, Jeng J T, et al. Robust support regression networks for function approximation with outliers [J] . IEEE Transactions on Neural Networks, 2002, 13 (6) : 1322-1330.
[15]  Zhan Yong, Cheng Hao-zhong. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system [J].Electric Power Systems Research, 2005, 73 (3) : 393-400.
[16]  Wang Shi-tong, Zhu Jia-gang, Chung Fu-lai, et al. Theoretically optimal parameter choices for support vector regression machines with noisy input [J]. Soft Computing, 2005, 9(10) : 732-741.
[17]  Lin Tau-chao, Yu Pao-ta. Adaptive two-pass median filter on support vector machines for image restoration [J] . Neural Computation, 2004, 16(2): 333-354.
[18]  Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters [J] . Journal of Cybernetics, 3(3) :32-57, 1973.
[19]  王宗明 仇性启.奥里乳化油燃烧器设计与实验[J].石油化工设备,2002,31(1):23-25.
[20]  Tizhoosh H R. Image thresholding using type Ⅱ fuzzy sets [J]. Pattern Recognition, 2005, 38( 12): 2363-2372.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133