全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用高斯混合模型的SAR图像目标CFAR检测新方法

DOI: 10.11834/jig.20090104

Keywords: 高斯混合模型,恒虚警率,目标检测,SAR图像

Full-Text   Cite this paper   Add to My Lib

Abstract:

SAR(合成孔径雷达)图像杂波分布模型种类繁多且对实际地物的建模能力有限。在使用基于杂波统计模型的CFAR(恒虚警率)算法对SAR图像进行目标检测时,杂波统计模型的失配会导致检测结果产生较大的CFAR损失,算法精度不高。提出了一种基于高斯混合模型的CFAR检测新方法。该方法以理论上可以拟合任意形状概率密度分布的高斯混合模型对实际SAR图像的背景杂波进行拟合,利用拟合后得到的分布模型,根据CFAR检测的原理推导出目标检测阈值的计算公式完成目标的检测。新方法对服从不同分布模型的背景杂波,使用形式上统一的模型进行描述,克服了CFAR检测高度依赖背景杂波分布的缺点,提高了CFAR的通用性。实验结果表明,即使在背景杂波类型未知的情况下,新方法依然得到了良好的目标检测效果。

References

[1]  Yang Y N, Qiu Y X, Lu C. Automatic target classification experiments on the MSTAR SAR images[ A ]. In:Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Networks[ C ] , Washington, USA ,2005:2-7.
[2]  李晶晶 王守勇 胡文琳.基于多杂波分布模型的自适应单元平均恒虚警检测[J].空军雷达学院学报,2005,19(3):4-7.
[3]  何友 RohlingH.有序统计恒虚警(OS―CFAR)检测器在韦尔尔扰背景中的性能[J].电子学报,:.
[4]  Kuttikkad S, Chellappa R. Non-gaussian CFAR techniques for target detection in high resolution SAR images [ A]. In: Proceedings of IEEE International Conference on image Processing [ C ] , Austin, TX, November, 1995: 910-914.
[5]  Jeff A Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models [ R]. TR97021, Berkeley, CA, USA: international Computer Science Institute, Computer Science Division Department of Electrical Engineering and Computer Science, University of California, 1998.
[6]  Novak L M, Halversen S D. Effects of polarization and resolution on SAR ATR [J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1) : 102-115.
[7]  John W W. An improved method for detection of stationary targets in high clutter SAR images [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005,13 ( 1 ) :1-6.
[8]  He K, Liu H W, Wu S J. Automatic target recognition based on MSTAR SAR image database[ A].In : Proceedings of the China-SAR Conference[ C] , Nanjing, China, 2005 : 412-417.
[9]  Rohling H. Radar CFAR thresholding in clutter and multiple target situations [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(4) :608-612.
[10]  何友.雷达自动检测与恒虚警处理[M].北京:清华大学出版社,1999..
[11]  Salazar J S, Hush D R. Statistical modeling of target and clutter in single-look non-polarimetric SAR imagery [ A]. In: Proceeding of IASTED International Conference on Signal and Image Processing [C], Las Vegas, USA, 1998:272-276.
[12]  Jyh-Shing Roger Jiang. Data Clustering and Pattern Recognition [ EB/ OL]. hnp://www. cs. nthu. edu. tw/-jiang.
[13]  向日华 王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报,:.
[14]  李响 韩萍 吴仁彪等.一种基于Weibull分布的SAR图像分割方法[J].系统工程与电子技术,2007,29(5):677-679.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133