基于非对称打包和FSVM的图像检索
DOI: 10.11834/jig.20101114
Keywords: 基于内容的图像检索,非对称打包,模糊支持向量机
Abstract:
在图像检索的相关反馈中,引入支持向量机分类方法虽可以提升图像的检索性能,但是传统的支持向量机存在正样本数少、样本非对称、过学习和弱实时性的局限。针对上述问题,提出了一种基于非对称打包的FSVM算法。该算法首先对负样本进行非对称打包处理,最后结合模糊理论与SVM实现图像检索。Corel图片集上的实验表明,当正样本数较小时,该新算法的平均查准率-查全率要优于已有算法。
Full-Text