全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

曲波域高斯混合尺度模型的图像压缩重构

DOI: 10.11834/jig.20131004

Keywords: 压缩重构,两步迭代阈值,曲波域高斯混合尺度模型,自适应步长

Full-Text   Cite this paper   Add to My Lib

Abstract:

压缩传感理论将信号的采样与压缩同时进行,利用信号在变换基上可以稀疏表示的先验知识,从比香农采样少得多的观测值中重构原始信号。近年来,两步迭代阈值算法作为一种求解反问题的优化方法,因其与多尺度几何分析存在紧密联系,且算法参数少,思想比较简单等特点,已经应用到了压缩重构中。但其使用时域的软硬阈值算子,不能获得很好的图像稀疏表示,从而使得算法重构精度不高。针对上述问题,在研究两步迭代阈值算法的基础上,提出一种自适应的两步迭代阈值算法。该算法利用当前估计值提供的信息自适应估计步长参数,保证了估计值向最优解方向移动,提高了算法的重构精度,且针对其稀疏表示信号能力不足的缺点,运用高斯混合尺度模型对曲波邻域系数进行建模,充分利用曲波变换平移不变性和多方向选择性的优点,增加了图像表示的稀疏度。最后将其应用到图像压缩重构中,实验结果表明,该算法在峰值信噪比和主观视觉上都优于小波域高斯混合尺度模型和曲波硬阈值重构方法。

References

[1]  Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[2]  Candes E, Wakin M. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
[3]  Li S T, Wei D. A survey on compressive sensing[J]. Acta Automatic Sinica, 2009,35(11):1369-1377.[李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377.]
[4]  Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993,41(12): 3397-3415.
[5]  Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[6]  Do T T, Gan L, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing//Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, California: IEEE, 2008: 581-587.
[7]  Zhou B, Zhu T, Zhang X W.Signal sparse representation in compressed sensing technology[J]. Journal of Military Communications Technology, 2012,33(1):85-89.[周彬,朱涛,张雄伟.压缩感知技术中的信号稀疏表示方法[J].军事通信技术,2012,33(1):85-89.]
[8]  Li Y, Zhang Y N, Xu X. Advances and perspective on morphological component analysis based on sparse representation[J]. Acta Electronica Sinica, 2009,37(1):146-152.[李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152.]
[9]  Daubechies I, Defrise M, Mol C De. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Comm. pure. Appl. Math., 2004, 57(11): 1413-1457.
[10]  Bioucas Dias J M, Figueiredo M A T. A new TWIST: two-step iterative shrinkage/thresholding algorithms for Image restoration[J]. IEEE Transactions on Image proce-ssing, 2007, 16(12): 2992-3004.
[11]  Kim Y, Nadar M S, Bilgin A. Wavelet-based compressed sen- sing using a gaussian scale mixture model[J]. IEEE Transactions on Image Processing, 2012, 21(6): 3102-3108.
[12]  Li L, Kong L F. Compressed sensing image reconstruction based on gaussian mixture scale model[J]. Optical Technique, 2010,36(3):432-438.[李林,孔令富.基于高斯混合尺度模型的压缩传感图像重构[J].光学技术,2010,36(3):432-438.]
[13]  Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixtures of gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351.
[14]  Barzilai J, Borwein J. Two point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8: 141-148.
[15]  Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133