Thomas S Parker, Leon O Chua. Practical Numerical Algorithms for Chaotic Systems.Springer-Verlag,New York Inc.,1989.
[4]
柏廷顿JR.化学简史[M].北京:商务印书馆,1979.57.
[5]
狄德罗GG.哲学选集[M].北京:商务印书馆,1983..
[6]
PoincareH.科学的价值[M].北京:光明日报出版社,1988.309,387.
[7]
B,van der Pol.On Relaxation Oscillations.Phil.Magazine,7th Ser,2,1926.
[8]
Smale S.Essays on Dynamical Systems.Economic Processes and Relared Topics.The Mathematics of Time.Spinger-Verlag.1980.
[9]
Ruelle D,Takens D.On the Nature of Turbulence,Commun.Math,Phys,1971,23(2):343-344.
[10]
Takens F,Introduction to Glogal Analysis.Comm.no 2,Math.Inst Univ.Utrecht,1973.
[11]
Ruelle D,Dynamical Systems with Turbulent Behavior,Lecture Notes in Physics,Springer-Verlag,1978,80.
[12]
Arnol\\'d V I,Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics.Russian Math.Surveys,1963,18(6):85-189.
[13]
Hao Bailin.Elementary Symbolic Dynamics and Chaos in Dissipative Systems.World Scientific,Singapore,1989.
[14]
Henon M,Heiles C.The Applicability of the Third Integral of Motion:Some Numerical Experiments,Astronmical Jounal.1964,69:73-79.
[15]
Ford J.What is Chaos,That We Should Be Mindful of It?:in The New Physics,ed by S.Capelin and P.C.W.Davies,Cambridge:Cambridge Univ,Press,1986.
[16]
Oseledec V I.A Multiplicative Ergodic Theorem Lyapunov Characteristic.Numbers for Dynamical Systems.trans,Moscow Math.Soc.,1968,19(2):197-221.
[17]
Ueda Y,Akamatsu N.Chaotically Transitional Phenomena in the forced Negative Resistance Oscillator.IEEE Trans,1981,CS28:217-224.
[18]
Sarkovskii A N.Coexistence of Cycles of a Continuous Map of a Line into Itself.Ukrainian Mathematics Journal.1964,16:61.
[19]
Devaney R L.An Introduction to Chaotic Dynamical Systems,Menlo Park,CA:Benjamin/Cummings,1986.
[20]
詹姆斯?格莱克.混沌:开创新科学[M].上海:上海译文出版社,1990.67.
[21]
林泉.谈谈攀登计划[J].科学(上海),1992,44(6):4-6.
[22]
恩格斯F.自然辨证法[M].北京:人民出版社,1970,10..
[23]
康德I.宇宙发展史概论[M].,1972.178,64,65,24,14.
[24]
Poincare H.New Methods of Celestial Mechanics,NASA,1967:382.
[25]
Cartwright M L.Littlewood J E,On Nonlinear Differential Equations of the Secong Order:I.The Equation,large,J London Math,Soc,1945,20,180-189.
[26]
Smale s,Stable Manifolds for Differential Equations and Diffeomorphisms.Ann.Scueal Sup.Piza,1963.
[27]
Ruelle D,Takens F.On the Nature of Turbulence.Commun.Math.Phys.1971,20(1):167-192.
[28]
Newbouse S,Ruelle D,Takens F.Occurrence of Strange Axiom A Attractors Near Quasiperiodic Flows on .Commun.Math.Phys,1978,64(1).
[29]
更多...
[30]
Komogorov A N.The General theory of Dynamical Systems and Classical Mechanics,1954.
[31]
Moser J.On Invariant Curves of Area-preserving Mappings of an Annulus,Nachr,Akad,Wiss,Wiss,Gottingen Math,Phys KI,1962,2:10-20.
[32]
Ford J.How Random is a Coin Toss.Physics Today,1983,36(4):40-47.
[33]
Ford J,Chaos:Solving The Unsolvable.Bredicting The Unpredictable:in Cha otic Dynamics and Fractals,ed by M.F.Barnsley and S.G.Demko.New York,Academi c Press,1985.
[34]
Lorenz E N,Deterministic Nonperiodic Flow,J.Atmos.Sci,1963:20,130-141.
[35]
Ueda Y,Survey of Regular and Chaotic Phenomena in the Forced Duffing Oscillator,Chaos,Solitons and Fractals,1991,1:199-231.
[36]
Li T Y,Yorke J A.Period Three Implies Chaos,Amer.Math,Monthly,1975:82,985-992.