全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种多光谱遥感图象的近无损压缩方法

DOI: 10.11834/jig.1998010244

Keywords: K-L变换,数字余弦变换,预测树,近无损压缩

Full-Text   Cite this paper   Add to My Lib

Abstract:

近无损压缩是在无损压缩和有损压缩之间的一种折衷。多光谱遥感图象的近无损压缩通常用K-L变换去除谱间冗余,用数字余弦变换(DCT)去除空间冗余来实现。本文分析了多光谱遥感图象空间冗余和谱间冗余的特点,提出用K-L变换和预测树方法去除两类冗余。该方法更好地去除了谱间冗余,取得了较好的实验结果。

References

[1]  Roger R E,Arnold F. Reversible Image Compression Bounded By Noise. IEEE Trans. Geodesic. Remote Sensing, 1994,32 (1): 19~24.
[2]  Hoffman R N,Johnson D W. Application of EOF\'s to Multispectral Imagery Data Compression and Noise Detection for AVIRIS. IEEE Trans. Geosci Remote Sensing, 1994,35 (1): 25~34.
[3]  Abousleman G P,Marcellin M W,Hunt B R. Compression of Hyperspectral Imagery Using the 3-D DCT and Hybrid DCPM/DCT. IEEE Trans. Geosci. Remote Sensing, 1995,33 ( 1 ): 26 ~33.
[4]  Saghri J A,Tescher A G. Near-lossless Bandwidth Compression for Radiometric Data. Optical Engineering, 1991,30 (7): 934~939.
[5]  Saghri J A,Tescher A G,Reagan J T. Practical Transform Coding of Multispectral Imagery. IEEE processing Magazine, 1995,12(1):32~43.
[6]  Memon N D,Sayood K,Nagliras S S. Lossless Compression of Multispectral Image Data. IEEE Trans. Geosci. Remote Sensing,1994,32 (2) : 282~289.
[7]  Wang J F,Zhang K,Tang S. Spectral and Spatial Decorrelation of Landsat-TM Data for Lossless Compression. IEEE Trans.Geosci. Remote Sensing, 1995,33(5): 1277~ 1285.
[8]  Arnavut Z,Narumalani S,Application of Permutation to Lossless Compression of Multispectral Thematic Mapper Image,Optical Engineering. 1996,35(12): 3342~3448.
[9]  Hong G,Hall G,Errell J. Discrete Cosine Transform Data Compression Application Applied to Satillite Sensor Image. International Journal of Remote Sensing. 1995,16(5):835~850.
[10]  钱神恩,李桂菊,刘伟奇.基于轮廓纹理分解的三维谱象数据压缩.环境遥感,1996,11(1):14~19.
[11]  戴一奇,胡冠章,陈卫.图论与代数结构,北京:清华大学出版社:1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133