全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从明暗恢复形状(SFS)的几类典型算法分析与评价

DOI: 10.11834/jig.2001010204

Keywords: 从明暗恢复形状,朗伯体反射模型,光滑表面模型,最小值方法,演化方法,局部方法,计算机视觉

Full-Text   Cite this paper   Add to My Lib

Abstract:

从明暗恢复形状(shapefromshading,简称SFS)是计算机视觉中三维形状恢复问题的关键技术之一,其任务是利用单幅图象中物体表面的明暗变化来恢复其表面三维形状。为了使人们对SFC研究现状及求解SFS问题的各种算法的优缺点有个概略了解,首先介绍了求解传统SFS问题的4类方法中几个典型算法的基本原理及求解方法,并给出了实验结果,然后从算法解的唯一性、对真解的逼近程度、求解效率及适用范围等方面对这4类算法进行了比较和评价。

References

[1]  [2]Horn B K P, Brooks M J. The variational approach to shape from shading[J]. CVGIP., 1986,(33):174~208.
[2]  [4]Pentland A. Shape information from shading:A theory about human perception[A]. In:Proc.Intl.Conf.CV[C].Tampa,1988:404~413.
[3]  [8]Oliensis J. Shape from shading as a partially well-constrained problem.[J] CVGIP:IU., 1991,54(2):163~183.
[4]  [10]Bruckstein A M. On shape from shading[J]. CVGIP.,1988,(44):139~154.
[5]  [12]Kimmel R, Bruckstein A M. Global shape from shading[J]. CVIU.,1995,62(3):360~369.
[6]  [14]Rouy E, Tourin A. Aviscosity solutions approach to shape-from-shading[J]. SIAM Journal of Numerical Analysis.,1992,29(3):867~884.
[7]  [16]Dupuis P, Oliensis J. Direct method for reconstructing shape from shading[A]. In:IEEE Computer Society Conference on CVPR[C].Urbana Champaign,1992:453~458.
[8]  [18]Pentland A P. Local shading analysis[J]. IEEE Trans. on PAMI., 1984,6(2):170~187.
[9]  [20]Tsai P-S, Shah M. A fast linear shape from shading[A]. In:IEEE Computer Society Conference on CVPR[C]. Urbana Champaign,1992,734~736.
[10]  [22]Ulich G. Provably convergent methods for the linear and nonlinear shape from shading problem[J]. Journal of Mathematical Imaging and Vision,1998,9(1):69~82.
[11]  [23]Vega O E, Yang H. Shading logic:A heuristic approach to recover shape from shading[J]. IEEE Trans. on PAMI.,1993,15(6):592~597.
[12]  [25]Hsieh J-W, Liao H-Y M, Ko M-T et al. Wavelet-based shape from shading[J].Graphical Models and Image Processing, 1995,57(4):343:362.
[13]  [1]廖熠,赵荣椿. 从明暗恢复形状方法综述[A]. 见:中国体视学学会图象分析、中国体视学学会仿真与虚拟现实、中国航空学会信号与信息处理专业第一届联合学术会议论文集[C].山西五台山.2000:310~315.
[14]  [3]Horn B K P. Height and gradient from shading[J]. International Journal of Computer Vision. 1990,5(1):37~75.
[15]  [5]Dupuis P, Oliensis J. Shape from shading:Provably convergent algorithms and uniqueness results[A]. In:Computer Vision-ECCV\'94[C].Stockholm,Sweden,1994:259~268.
[16]  [6]Zheng Q, Chellappa R. Estimation of illuminant direction,albedo,and shape from shading[J].IEEE Trans.on PAMI.1991,13(7):680~702.
[17]  [7]Lee K M,Kuo C-C J.Shape from shading with a linear triangular element surface model[J]. IEEE Trans. on PAMI.1993,15(8):815~822.
[18]  [9]Oliensis J. Uniqueness in shape from shading[J]. International Journal of Computer Vision. 1991,6(2):75~104.
[19]  [11]Kimmel R, Bruckstein A M. Tracking level sets by level stes:A method for solving the shape from shading problem[J]. CVIU.,1995,62(2):47~58.
[20]  [13]Shimshoni I, Kimmel R, Bruckstein A M. Dialogur:Global shape from shading[J].CVIU.,1996,64(1):188~189.
[21]  [15]Osher S. A level set formulation for the solution of the dirichlet problem for hamilton-jacobi equation[J]. SIAM J. Math.Anal.,1993,24(5):1145~152.
[22]  [17]Bichsel M, Pentland A P. A simple algorithm for shape from shading[A].In: IEEE Computer Society Conference on CVPR[C].Urbana Champaign,1992:459~465.
[23]  [19]Lee C-H, Rosenfeld A. Impoved methods of estimating shape from shading using the light source coordinate system[J]. Artificial Intelligence, 1985,(26):125~143.
[24]  更多...
[25]  [21]Kozera R. Uniqueness in shape from shading revisited[J]. Journal of Mathematical Imaging and Vision., 1997,7(2);123~138.
[26]  [24]Szeliski R. Fast shape from shading[J]. CVGIP:IU.,1991,53(2):129~153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133