利用小变换和特征加权进行纹理分割
DOI: 10.11834/jig.20010479
Keywords: 纹理分析 ,纹理分割 ,小波变换 ,特征提取 ,特征加权 ,图象分割
Abstract:
为了提高纹理图象分割的边缘准确性和区域一致性以及降低分割错误率,提出了一种基于小波变换的利用特征加权来进行纹理分割的方法。该方法包括特征提取、预分割和后分割3个阶段,其中,特征提取在金字塔结构小小以变换的基础上进行;预分割利用均人矣类算法来对原始图象进行初步的分割;后分割则根据预分割的结果对特征进行加权,然后利用最小距离分类器来实现图象的最后分割。与传统的方法相比,该方法在分割错误率、边缘准确性以及区域一致性等方面均有明显的改善。
References
[1] [1]Mallat S G. A theory of multiresolution signal decomposition: The wavelet representation. IEEE-PAMI, 1989,11(7):674~693.
[2] [3]wavelets. Comm. Pure Appl. Math., 1988,41:909~996.
[3] [5]Salari E, Ling Z. Texture segmentation using hierarchical
[4] [7]Lu C S, Chung P C, Chen C F. Unsupervised texture
[5] [10]Laws K I. Rapid texture identification. SPIE, 1980,238:
[6] [12]Brodatz P. Textures: A photographic album for artists and
[7] [2]Daubechies I. Orthogonal bases of compactly supported
[8] [4]Unser M. Texture classification and segmentation using wavelet frames. IEEE-IP, 1995, 4(11):1549~1560.
[9] [6]wavelet decomposition. Pattern Recognition, 1995,28(12):1819~1824.
[10] [8]segmentation via wavelet transform. Pattern Recognition, 1997,30(5):729~742.
[11] [9]Wu G H, Zhang Y J, Lin X G. Wavelet transform-based texture classification using feature weighting. Proc. ICIP\'99, USA: IEEE Publisher, 1999,435~439.
[12] [11]~380.
[13] [13]designer. New York: Dover, 1966.
Full-Text