全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维医学图象可视化技术综述

DOI: 10.11834/jig.20010228

Keywords: 三维医学图象,多模态医学图象,可视化,图象分割,数据整合,图象匹配,数据融合,影像诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

概要地分析和评述了近年来三维医学图象可视化技术的发展,并主要从三维医学图象的分割标注、多模态医学图象的数据整合、体数据的绘制等3个角度对三维医学图象的可视化技术进行了分类综述,同时介绍了各种算法的原理和最新进展,由于医学图象可视化的目的是辅助医学了解生物内部组织的信息,因此除图象绘制技术外,组织及组织特性的精确自动分割标注技术,以及将不同图象模态提供的互补信息综合起来的匹配/融合技术外,都是医学图象可视化需要解决的重要问题,其中,多模态图象的可视化在三维医学图象可视化领域中最具有挑战性和发展前景。

References

[1]  [1]McCormick B H et al. Visualizationin scientific computing.Computer Graphics, 1987,21(6):1~14.
[2]  [3]Pal N R, Pal S K. A review on image segmentation technique. Pattern Recognition,1993,26(9):1277~1294.
[3]  [5]Gregson P H. Automatic segmentation of the heart in 3D MR images. In: Baird C R,El-Hawary M E Ed., Canadian Conference on Electrical and Computer Engineering. New York:IEEE, 1994,2:584~587.
[4]  [6]Hu Jianming, Hu Xiheng. An approach to automatic segmentation of 3D intravascularultrasound images. In: Nuclear Science Symposium and Medical Imaging Conference. IEEEConference Record.New York, 1994:1461~1464.
[5]  [8]Fassnacht C, Devijver P A. Medical image segmentation with a 3D nearest neighborMarkov mesh. In:Proceedings of the 18th. Annual International Conference of the IEEEEngineering in Medicine and Biology society. New York, 1996,3:1049~1050.
[6]  [10] Kass M et al. Sankes: active contiour models. Inte J Comput Vision, 1988,1(4):321~331.
[7]  [12] McInerney, Tim et al. Dynamic finite element surface model for segmentation andtracking in multidimensional medical images with application to cardiac 4D image analysis.Computerized Medical Imaging and Graphics, 1995,19(1):69~83.
[8]  [15] Thedens D R et al. Methods of graph searching for border detection in imagesequence with application to cardiac images. IEEE Transaction Medical imaging,1995,14(3):42~55.
[9]  [17] Annunziato M et al. Segmentation of multi-slices NMR images. In: Impedovo S.ED.,Proceedings of the 7th International Conference on Image Analysis and Processing. Progressin Image Analysis and Processing III, Singapore: World Scientific, 1994:117~120.
[10]  [20] Ahmed M N, Farag A. Two-stage neural network for volume segmentation of medicalimages. In: Proceedings of IEEE International Conference on Neural Networks vol.3.Piscataway, NJ, USA: IEEE, 1997:1373~1377.
[11]  [23] Tan Ou et al. Automatic segmentation and classification of human brain imagesbased on a fuzzy brain atlas. In: Proc. SPIE 3545, International symposium onMultispectral Image Processing. Washington, USA: SPIE, Bellingham, 1998:508~511.
[12]  [25] Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets.IEEE Trans Pattern Anal Mach. Intell. 1987,9:698~700.
[13]  [27] Horn B K P. Closed-form solution of absolute orientation using unit quaternions.J Opt Soc Amer A, 1987,4:629~642.
[14]  [30] Besl P J, McKay N D. A methods for registration of 3-D shapes. IEEE Trans PatternAnal and Machine Intell, 1992,14(2):239~256.
[15]  [32] Studholme C, Hill D G, Hawkes D J. Multiresolution voxel similarity measures forMR-PET registration, Proc IPMI, 1995:287~298.
[16]  [34] Chen L S, Sontag M R. Representation, Display, and Manipulation of 3D DigitalScenes and Their Medical Applications, CVGIP, 1989,48(2):190~216.
[17]  [36] Hohne K H, Bernstein R. Shading 3D images from CT using gray-level gradients.IEEE Trans. Medical Imaging, 1986,5:45~47.
[18]  [37] Udupa J, Odhner D. Fast visualization, manipulation and analysis of binaryvolumetric object. IEEE Computer Graphics and Application, 1991,11(6):53~62.
[19]  [39] Soferman Z et al. Advanced graphics behind medical virtual reality: evolution ofalgorithms, hardware and software interface. Proceeding of IEEE, 1998,86(3):531~554.
[20]  [42] Lacroute P. Analysis of a parallel volume rendering system based on shear-warpfactorization. IEEE Trans. on Visualization and computer Graphics, 1996,(2):218~231.
[21]  [2]Rosenblum L et al. Scientific visualization advances and challenges. London:Harcournt Brace & Company, 1994.
[22]  [4]Chen Changwen et al. Knowledge-based approach to volumetric medical imagesegmentation. In: IEEE International Conference on Image Processing Los Alamitos,USA:IEEE, 1994,3:493~497.
[23]  [7]Zimmermann H J. Fuzzy set theory and its application. Boston: Kluwer, 1991:217~240.
[24]  [9]Baker M C, Stytz M R. Experience using bayesian segmentation on low-noiseultrasound images of residual limbs. In:Proceedign of the 18th. Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society, New York,1996,3:1065~1066.
[25]  [11] Ranganath S. Contour extraction from a cardiac MRI study using snakes. IEEEMedical Imaging, 1995,14(6):328~338.
[26]  [13] Xu Chenyang, Prince J L. Snakes, shapes, and gradient vector flow. IEEE Trans.Image Processing, 1998,(7)3:359~369.
[27]  [14] Aboutanos G B, Nikanne J, Watkins N et al. Model creation and deformation for theautomatic segmentation of the brain in MR images. IEEE Trans. on Biomed. Eng.,1999,46(11):1346~1356.
[28]  [16] Ivana Mikic et al. Segmentation and tracking in echocardiography sequences:active contours guided by optical flow estimates. IEEE Transaction on Medical Imaging,1998,17(2):274~284.
[29]  [18] Fumikazu Iseki et al. Extraction of 3D tree structure of blood vessels in lungarea from chest CT images. In: Lemke H U et al.Ed., Proceedinds of the 12th InternatinalSymposium and Exhibition of Computer assisted Radiology and Surgery. Netherland: ElsevierScience, 1998:45~48.
[30]  [19] Cheng Kuosheng, Lin Jzausheng, Mao Chi-Wu. The application of competitiveHopfield neural network to medical image segmentation. IEEE Trans. Medical Imaging,1996,15(4):560~567.
[31]  更多...
[32]  [21] Snell J W et al. Model-based boundary estimation of complex objects usinghierarchical active surface templates. Pattern Recognition, 1995,28(10):1599~1609.
[33]  [22] Tan Ou et al. Automatic segmentation and classification of human brain imagesbased on TT atlas. In: Proceedings of the 20th Annual International Conference of theIEEE-EMBS, New York, USA: IEEE, 1998:700~703.
[34]  [24] Gauch J M. Image segmentation and analysis via multiscale gradient watershedhierarchies. IEEE Trans Image Processing, 1999,8(1):69~79.
[35]  [26] Horn B K P et al. Closed-form solution of absolute orientation using orthonormalmatrices. J Opt Soc Amer A, 1988,5:1127~1135.
[36]  [28] Pelizarri C A et al. Accurate three-dimensional registration of CT, PET, and/orMR images of the brain. J Comp Assist Tomogr, 1989,13(1):20~26.
[37]  [29] Jiang H, Robb R A, Holton K S. A new approach to 3-d registration ofmultimodality medical images by surface matching. In:Richad A Robb Ed., Visualization inBiomedical Computing\'92,Proc SPIE, 1992,1908:196~213.
[38]  [31] Collignon A et al. 3D multimodality image registration using features spaceclustering. In: Proc Computer Vision, Virtual Reality, and Robotics in Medicine(CVRMed\'95), Nice,FR:Springer-Rerlag,Berlin,1995:195~204.
[39]  [33] Wells W M, Viola P, Atsumi H et al. Multi-modal volume registration bymaximization of mutual information. Medical Image Analysis, 1996,1(1):35~51.
[40]  [35] Zhang Z. Iterative point matching for registration of free-form curves andsurfaces. Int J Computer Vision, 1994,13(2):119~152.
[41]  [38] 彭群生等著. 计算机真实感图形的算法基础.北京:科学出版社,1999.
[42]  [40] Levoy M. Display of surfaces from volume rendering. IEEE Computer Graphics andApplication, 1988,8(5):29~37.
[43]  [41] Akeley K. Reality engine graphics. In:Proc. SIGGRAPH\'93, Anaheim, CA:ACM,1993:109~116.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133