全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于软门限去噪的图象压缩编码研究

DOI: 10.11834/jig.20010112

Keywords: 子波变换,图象压缩,噪声,软门限去噪,图象编码

Full-Text   Cite this paper   Add to My Lib

Abstract:

在详细地分析了Donoho提出的子波域软限去噪方法的基础上,给出了含噪图象信号噪声水平的估计及门限值随尺度变化的规律。采用可分离的二维子波滤波器,方便地将Donoho的软门限去噪方法应用于图象信号处理,从而对含噪图象,在去除噪声的同时,又最大限度地进行了压缩。针对含噪的自然景物图象和合成孔径雷达图象的不同特点,分别提出了这在图象的压缩方案。对于SAR图象的压缩编码,通过一个自然对数变换,使得乘性噪声转变为适于软门限去噪的加性噪声。模拟结果显示,用软门限方法处理的解压缩图象比硬门限方法具有更好的视觉质量,因而该方法是解决含噪图象压缩编码的有效技术。

References

[1]  [2]Antonini M, Barlaud M, Mathieu P et al. Image coding using wavelet transform.IEEE Trans. on Image Processing, 1992,1(2):205~220.
[2]  [4]Said A, Pearlman W A. A new fast and efficient image codec based on setpartitioning in Hierarchical Trees. IEEE Trans. Circ. Syst. Video Tech. 1996,6(3):243~250.
[3]  [6]Lu J, Healy D M, Weaver J B. Contrast enhancement of medical images usingmultiscale edge representation. Optical Engineering, 1994,33(7):2151~2161.
[4]  [8]Guo H, Odegard J E, Lang M et al. Wavelet based speckle reduction with applicationto SAR based ATD/R. IEEE International Conference on Image Processing, 1994,1:74~79.
[5]  [1]Daubechies I. Orthonormal bases ofcompactly supported wavelets. Comm. on Pure and Appl. Math., 1988,11:674~693.
[6]  [3]Shapiro J M. Embedded image coding using zerotrees of wavelets coefficients. IEEETrans. Signal Processing, 1993,41:3445~3462.
[7]  [5]Mallat S G, Hwang W L. Singularity detection and processing with wavelets. IEEETrans. on Information Theory, 1992,38(2):617~643.
[8]  [7]Donoho D L. De-noising via soft-thrsholding. IEEE Trans.Inform. Theory,1995,41(3):613~627.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133