全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

遥感超谱(Hyperspectral)图象处理技术

DOI: 10.11834/jig.20010103

Keywords: 超谱图象,数据压缩,图象分类,图像处理,遥感图象

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于遥感超谱图象谱分辨高的提高,如今已可以获得比多光谱图象更丰富的信息,并使得许多原先用多光谱信息不能解决的问题现在可以得到解决,它的问世是遥感技术应用的一个重大飞跃。另外,分类和压缩是目前国际上对超谱图象研究非常活跃的两个相对彼此独立、又相互联系的专题,因为压缩可以看作是给不同的子块分配不同的码字而实现的一种分类;反过来,分类也可以看作是一种提取感兴趣的地物信息的压缩。两者的差别主要在于评价最后处理结果的出发点不同,压缩一般侧重于恢复图象的平均误差,而分类则侧重于分类结果的错分概率。由于两者具有内在的相互联系,因此在实现算法上有许多相似之处,为了使人们对其发展的现状有所了解,因此对目前超谱图象分类和压缩广泛应用的方法进行了全面的综述,并对二者在应用中的相同之处和不同点作了比较分析,在此基础上,结合具体实例分别介绍了进行超谱图象分类和压缩的过程,并进行了计算机模拟仿真,最后给出了相应的结论和进一步研究的建议。

References

[1]  Jimenez L O, Landgrebe D A. Supervised classification in high- dimensional spece: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. On System, Man, and Cybernetics-Part C: Applications and Reviews 1998 28(1):39-54.
[2]  Jia Xiuplng, Richards J A. Segmented principal componemts transformation for efficient hyperspeetral remote sensing image display and classification. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(1) : 538-942.
[3]  Harsanyi J C, Chang Chein I. Hyperspectral image ctassification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. On Geoscience and Remote Sensing, 1994,32(4) : 779-785.
[4]  JimenezL O, Motell A M, Creus S. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, Majority Voting, and Neural Networks. IEEE Trans. On Geoscienee and Remote Sensing, 1999,37(3) : 1360-1366.
[5]  Hoffman R N, Johnson D W. Application of EOF\\'s to multispectral imagery : Data compression and noise detection for AVIRIS. IEEE Trans. On Geoscience and Remote Sewing, 1994.32(1) :25-34.
[6]  Ryan M J, Arnold J F. The iossless compressioa of AVIRIS images by vector quantization. IEEE Trans. On Geoscience and Remote Sensing, 1997,35(3):546-550.
[7]  Abousleman G P.Marcellin M W.Hunt B R,Hyperspectral image compression using entropy-constrained predictive trellis coded quantization, IEEE Trans. On Image Processing, 1997,6(4) :566-573.
[8]  Zhang Ye. Zhang Junping, Jin Ming et al. Adaptive subspace decomposition and classification for hyperspectrai images. Chinese .Journal of Electronics, 2000,9(1):82-88.
[9]  Tu Te Ming, Chert Chin Hsing. A fast two stage elassification method for bigh dimensional remote sensing data. IEEE Trans.on Geoscienee and Remote Sensing, 1S98,36(1) :182-191.
[10]  Zhang Ye, DesaiMD, Zhang Junping et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction, In:International Conference on Image Processing (ICIP99\\'), Kobe, Japan,1999:326-329.
[11]  Benediktsson J A, Sveinsson J S, Arnason K. Classification and feature extraction of AVIRIS data. IEEE Trans. On Geoseience and Remote Sensing, 1995,33(5):1194-1205
[12]  Chang Chein-I, Zhao Xiao Li, Althouse M L G et al Least squares subspaee projection approach to mixed pixel classification for hyperspectral images. IEEE Trans. On Geoscience and Remote Sensing, 1998,36(3):898-912.
[13]  Benediktsson J A, Kanellopulos I. Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(3):1367-1377.
[14]  Abousleman G P. Compression of hyperspeetral imagery using the 3 D DCT and hybrid DPCM/DCT. IEEE Trans. On Geoscience and Remote Sensing, 1995,33(1):26-34.
[15]  Canta G R, Poggi G. Kronecher-product gain shape vector quantlzation for multispectral and hyperspectral image coding, IEEE Trans. On Image Processing, 1998,7(5):668-678.
[16]  Roger R E, Cavenor M C. Lossless compression of AVIRIS images. IEEE Trans. On Image Processing, 1996, 5 (5) : 713-719
[17]  Zhang Ye, Jin Ming. Zhang Junping. Hyperspeetra image compression based on recursive bidirection prediction/JPEG. Chinese Journal of Electronics. 2000, g(3):235-241.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133