Jimenez L O, Landgrebe D A. Supervised classification in high- dimensional spece: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. On System, Man, and Cybernetics-Part C: Applications and Reviews 1998 28(1):39-54.
[2]
Jia Xiuplng, Richards J A. Segmented principal componemts transformation for efficient hyperspeetral remote sensing image display and classification. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(1) : 538-942.
[3]
Harsanyi J C, Chang Chein I. Hyperspectral image ctassification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. On Geoscience and Remote Sensing, 1994,32(4) : 779-785.
[4]
JimenezL O, Motell A M, Creus S. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, Majority Voting, and Neural Networks. IEEE Trans. On Geoscienee and Remote Sensing, 1999,37(3) : 1360-1366.
[5]
Hoffman R N, Johnson D W. Application of EOF\\'s to multispectral imagery : Data compression and noise detection for AVIRIS. IEEE Trans. On Geoscience and Remote Sewing, 1994.32(1) :25-34.
[6]
Ryan M J, Arnold J F. The iossless compressioa of AVIRIS images by vector quantization. IEEE Trans. On Geoscience and Remote Sensing, 1997,35(3):546-550.
[7]
Abousleman G P.Marcellin M W.Hunt B R,Hyperspectral image compression using entropy-constrained predictive trellis coded quantization, IEEE Trans. On Image Processing, 1997,6(4) :566-573.
[8]
Zhang Ye. Zhang Junping, Jin Ming et al. Adaptive subspace decomposition and classification for hyperspectrai images. Chinese .Journal of Electronics, 2000,9(1):82-88.
[9]
Tu Te Ming, Chert Chin Hsing. A fast two stage elassification method for bigh dimensional remote sensing data. IEEE Trans.on Geoscienee and Remote Sensing, 1S98,36(1) :182-191.
[10]
Zhang Ye, DesaiMD, Zhang Junping et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction, In:International Conference on Image Processing (ICIP99\\'), Kobe, Japan,1999:326-329.
[11]
Benediktsson J A, Sveinsson J S, Arnason K. Classification and feature extraction of AVIRIS data. IEEE Trans. On Geoseience and Remote Sensing, 1995,33(5):1194-1205
[12]
Chang Chein-I, Zhao Xiao Li, Althouse M L G et al Least squares subspaee projection approach to mixed pixel classification for hyperspectral images. IEEE Trans. On Geoscience and Remote Sensing, 1998,36(3):898-912.
[13]
Benediktsson J A, Kanellopulos I. Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(3):1367-1377.
[14]
Abousleman G P. Compression of hyperspeetral imagery using the 3 D DCT and hybrid DPCM/DCT. IEEE Trans. On Geoscience and Remote Sensing, 1995,33(1):26-34.
[15]
Canta G R, Poggi G. Kronecher-product gain shape vector quantlzation for multispectral and hyperspectral image coding, IEEE Trans. On Image Processing, 1998,7(5):668-678.
[16]
Roger R E, Cavenor M C. Lossless compression of AVIRIS images. IEEE Trans. On Image Processing, 1996, 5 (5) : 713-719
[17]
Zhang Ye, Jin Ming. Zhang Junping. Hyperspeetra image compression based on recursive bidirection prediction/JPEG. Chinese Journal of Electronics. 2000, g(3):235-241.