全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机的磁共振脑组织图像分割

DOI: 10.11834/jig.2005010230

Keywords: 支持向量机,分割,脑组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑组织图像分割在医学图像分析中具有重要的理论和应用价值。由于支持向量机被看作是对传统学习分类器的一个好的替代,特别是在小样本、高维情况下,具有较好的泛化性能,因此可采用支持向量机方法对磁共振脑组织图像进行分割研究。为了验证支持向量机分割磁共振脑组织图像的效果,利用支持向量机进行了脑组织图像分割实验。实验结果表明:核函数及模型参数对支持向量机的分割性能有较大的影响;支持向量机方法适合作为小样本情况下的学习分类器;对目标边界模糊、目标灰度不均匀及目标不连续等情况下的图像(如医学图像)分割,支持向量机方法也是一个好的选择。

References

[1]  Lin Yao, Tian Jie, Zhang Xiao-peng. Application of a new medical image segmentation method based on fuzzy connectedness and FCM [J]. Chinese Journal of Stereology and Image Analysis, 2001,6(2):103~108.[林瑶,田捷,张晓鹏.基于模糊连接度的FCM分割方法在医学图像分析中的应用[J].中国体视学与图像分析,2001,6(2):103~108.]
[2]  Vapnik V. The Nature of Statistical Learning Theory [M ]. New York: Springer-Verlag, 1995.
[3]  Burges C. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998,2 (2):121 ~ 167.
[4]  Zhao Q, Principe J. Support vector machines for SAR automatic target recognition [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (2): 643 ~ 654.
[5]  Weston J, Watkins C. Multi-class Support Vector Machines [ R ].Technical Report, CSD-TR-98-04, Egham, UK: University of London, 1998:1 ~9.
[6]  Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines[ J]. IEEE Transactions on Neural Networks, 2002,13(2): 415 ~425.
[7]  Haralick R M, Shanmugam K, Dinstein I. Textual features for image classification [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 610 ~621.
[8]  Muller K R, Mika S, Ratsch G, et al. An introduction to kernelbased learning algorithm[ J]. IEEE Transactions on Neural Networks,2001, 12(2): 181 ~201.
[9]  Reddick W E, Glass J O, Cook E N, et al. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks [ J ]. IEEE Transactions on Medical Imaging, 1997, 16(6): 911 ~918.
[10]  Zhang Xue-gong. Introduction to statistical learning theory and support vector machines[ J]. Acta Automatica Sinica, 2000,26( 1 ):32~42.[张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32~42.]
[11]  Osuna E, Freund R, Girosi F. Training support vector machines: An application to face detection [ A ]. In: Proceedings of Computer Vision and Pattern Recognition [ C ], San Juan, Puerto Rico, 1997:130 ~ 136.
[12]  Lin C F, Wang S D. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13 (2): 464 ~ 471.
[13]  Genton M G. Classes of kernels for machine learning: a statistics perspective [ J]. Journal of Machine Learning Research, 2001,2(2): 299 ~312.
[14]  Petersen M E, Pelikan E. Detection of bone tumouts in radiographic images using neural networks [ J ]. Pattern Analysis & Application,1999, 2(2): 172 ~183.
[15]  Brailovsky V L, Barzilay O, Shahave R. On global, local, mixed and neighborhood kernels for support vector machines [ J ]. Pattern Recognition Letters, 1999, 20 ( 11-13 ): 1183 ~ 1190.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133