全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种有效的基于时空联合的视频对象自动分割新算法

DOI: 10.11834/jig.200509201

Keywords: 视频分割,Canny边缘检测,对比度增强,随机信号的检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对具有复杂背景的视频序列中运动物体的分割问题,在利用Canny算法将空间边缘信息结合到基于变化的分割技术的基础上,提出在预处理阶段对视频序列的灰度图进行局部对比度增强处理,以增加前景物体与背景对比度的观点,首先解决了许多视频分割算法都存在的对比度较低带来的分割困难问题,同时通过设计3×3模板的滤波器来滤除对比度增强之后引入的少量噪声;然后针对复杂背景的情况,设计了一种视频对象自动分割新算法,该算法利用随机信号的统计特性累计得到算法所需的背景来实现背景信息的自动获取;最后利用背景累积过程中分类讨论的观点,解决了物体停止运动时间较长时造成分割丢失的问题。实验结果表明,该算法可以有效地将运动物体从视频序列中自动地分割出来。

References

[1]  Adiv G. Determining three-dimensional motion and structure from optical flow generated by several moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985,7(4): 384 ~401.
[2]  Aach T, Kaup A, Mester R. Statistical model-based change detection in moving video[J]. Signal Processing, 1993, 31(2): 165 ~ 180.
[3]  Neri A, Colonnese S, Russo G, et al. Automatic moving object and background separation [J]. Signal Processing, 1998, 66 (2):219 ~ 232.
[4]  Shao-Yi Chen, Shyh-Yih Ma, Liang-Gee Chen. Efficent moving object segmentation algorithm using background registration technique [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12(7) :577 ~586.
[5]  Cavallaro A, Ebrahimi T. Accurate video object segmentation trough change detection [A]. In: Proceedings of IEEE International Conference on Muhimedia and Expo [C] , Lausanne, Switzerland,2002,8:26 ~ 29.
[6]  WANG Lei, ZHANG Xu-dong. Automatic segmentation of moving objects in video sequences using multifeature [J]. Journal of Image and Graphics,2003,8(11):1346~1351.[王蕾,张旭东.自动分割视频序列中运动物体的新算法:多特征联合方法[J].中国图象图形学报,2003,8(11):1346~1351.]
[7]  Gonzalez Rafael C, Woods Richard E. Digital image processing (second edition) [M]. Beijing: Publishing House of Electronics Industry, 2004:66 ~ 84. [ Gonzalez Rafael C, Woods Richard E. 数字图像处理(第2版).阮秋琦,阮宇智等译[M].北京:电子工业出版社,2004:66~84.]
[8]  CASIA Gait Database[ DB/OL] , http:∥www. sinobiometrics. com
[9]  Murray D W, Buxton B F. Scene segmentation from visual motion using global optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9 (2): 220 ~ 228.
[10]  Mech R, Wollborn M. A noise robust method for 2D shape estimation of moving objects in video sequence considering a moving camera [J].Signal Processing, 1998,66 (2): 203 ~ 217.
[11]  Guo J, Kim J W, Kuo C C J. Fast and accurate moving object extraction technique for MPEG-4 object-based video coding[A]. In:Proceedings of SPIE [C], Boston, Massachusetts, USA, 1999,3653:1210 ~ 1221.
[12]  Kim Changick, Hwang Jenq-Neng. Fast and automatic video object segmentation and tracking for content-based applications [J].IEEE Transactions on Circuits and Systems for video Technology, 2002,12(2) :122 ~ 129.
[13]  LUO Tao. Automatic segmentation of moving objects for headshoulder video sequence [J]. Acta Scientiarum Naturalium,Universitatis Pekinensis,2000,36(5):599~607.[罗涛.头肩视频图像的运动物体自动提取[J].北京大学学报(自然科学版),2000,36(5):599~607.]
[14]  YANG Li, ZHANG Hong, LI Yu-shan. Automatic segmentation for moving objects in video sequences[J]. Journal of Computer - Aided Design&Computer Graphics,2004,16(3):301~306.[杨莉,张弘,李玉山.视频运动对象的自动分割[J].计算机辅助设计与图形学学报,2004,16(3):301~306.]
[15]  Whalen A D. Detection of signals in noise [M]. New York and London:Academic Press,1971.[A.D.惠伦.噪声中的信号检测[M].刘其培,迟惠生译.北京:科学出版社.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133