全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于类间最近邻支持向量信息测度排序的快速分类算法研究

DOI: 10.11834/jig.200506148

Keywords: 支持向量机,核函数,乘性规则

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了基于特征空间中最近邻类间支持向量信息测度排序的快速支持向量机分类算法,对于训练样本首先进行最近邻类间支持向量信息测度升序排列处理;然后根据排序的结果选择最优的训练样本子空间,在选择的样本子空间内采用乘性规则直接求取Lagrange因子,而不是传统的二次优化方法;最后加入附加剩余样本进行交叉验证处理,直到算法满足收敛性准则。各种分类实验结果表明,该算法具有非常良好的性能,特别是在训练样本庞大,支持向量数量较多的情况下,能够较大幅度地减少计算复杂度,提高分类速度。

References

[1]  Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293~300.
[2]  焦李成 张莉 等.支撑矢量预选取的中心距离比值法[J].电子学报,:.
[3]  Platt J C. Fast algorithm for training support vector machines using Sequential minimimal optimization [A]. In: Advance in kernel methods-support vector learning [M] , Scholkopf B, Burges C J C,Smola A J, editors, Combridge, MA, USA: MIT Press, 1999:185~208.
[4]  Hu W J, Song Q. An accelerated decomposition algorithm for robust support vector machines [J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2004, 51 (5) :234~240.
[5]  Joachims T. Making large-scale support vector machine learning practical[ A ]. In: Advance in kernel methods-support vector learning [M], Scholkopf B, Burges C J C, Smola A J, editors, Cambridge,MA, USA: MIT Press, 1999:169~184.
[6]  Lin Kuan-Ming, Lin Chih-Jen. A study of reduced support vector machines [J]. IEEE Transactions on Neural Networks, 2003,14(6) :1449~1459.
[7]  李红莲 王春花 袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020.
[8]  Sha F,Saul L K,Lee D D. Multiplicatve updates for nonnegative quadratic programming in support vector machines[EB/OL]. http:∥www. cs. cmu.edu/groups/NIPS/NIPS2002/NIPS2002 preproceedings/papers/AA71. htm1, 2002-07-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133