全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于EM-EBF模型的遥感影像分类方法研究

DOI: 10.11834/jig.200506137

Keywords: 人工神经网络,遥感影像分类,椭球径向基函数,EM算法,混合密度

Full-Text   Cite this paper   Add to My Lib

Abstract:

椭球径向基函数神经网络(EBF)是在径向基函数(RBF)映射理论基础上的改进。在保留RBF3层网络结构基础上,EBF采用了最大期望算法来估计特征空间的混合密度分布参数,用椭球体集合来分解混合密度分布,从而构造了神经网络的中间层基函数的状态。由于遥感数据在特征空间中通常表现为混合密度分布,EBF模型能够充分利用期望最大(EM)算法获得的最大似然参数估计得到更合理的特征空间的密度分解模型,从而使得EBF模型能够保留RBF非线性复杂映射能力的同时,获得更合理的分类结果。为此提出了基于EBF的遥感分类方法,试验结果表明EBF方法比RBF方法网络连接更简单、分类精度更高。

References

[1]  Atkinson P M, Tatnall A R L. Neural networks in remote sensing [J]. International Journal of remote sensing, 1997, 18 ( 4 ):699~709.
[2]  Bishop C M. Radial basis functions, Neural Networks for Pattern Recognition[M]. Oxford, New York: Clarendon Press, 1995.
[3]  Rollet R, Benie GB, Li W, et al. Image classification algorithm based on the RBF neural network and K-means [J]. International Journal of Remote Sensing, 1998,19 ( 15 ): 3003~3009.
[4]  Chen T, Chen H. Approximation capability to functions of several variables, nonlinear functions, and operators by radial basis function neural networks[J]. IEEE Transactions on Neural Networks, 1995,6(4) :904~910.
[5]  Dempster A P, Laird N M, Rubin D B. Maximum likelihood estimation from incomplete data via EM algorithm [J]. Journal of Royal Statistical Society, 1977, 39( 1 ): 1~38.
[6]  McLachlan G J, Krishnan T. The EM Algorithm and Extensions [M]. New York: John Wiley&Sons, 1997.
[7]  Xu L. RBF nets, mixture experts, and Baysian Ying-Yang learning [J]. Neuro-computing, 1998,19 ( 1-3 ) :223~257.
[8]  Tadjudin S, Landgrebe D A. Robust parameter estimation for mixture model[J]. IEEE Transactions on Geoscience and Remote Sensing,2000, 38(1): 439 ~445.
[9]  Civco D L. Artificial neural networks for land cover classification and mapping [J]. International Journal of Geographical Information Systems, 1993, 7(2): 173~186.
[10]  Bruzzone L, Prieto D F. A technique for the selection of kernelfunction parameters in RBF neural networks for classification of remote-sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (2) :551~559.
[11]  Gomm J B, Yu D. Selecting radial basis function network centers with recursive orthogonal least squares training [J]. IEEE Transactions on Neural networks, 2000,11 (2) :306~314.
[12]  McLachlan G J, Basford K E. Mixture Models: Inference and Applications to Clustering[M]. New York: Marcel Dekker, 1988.
[13]  Mak M, Kung S. Estimationof elliptical basis function parameters by the EM algorithm with application to speaker verification[J]. IEEE Transactions on Neural Networks, 2000,11 (4) :961~969.
[14]  Mao K Z, Tan K C, Ser W. Probabilistic neural-network structure determination for pattern classification [J]. IEEE Transactions on Neural Networks, 2000, 11 (4): 1009~1016.
[15]  Zhuang X, Huang Y, Zhao Y. Gaussian mixture density modeling,decomposition, and applications [J]. IEEE Transactions on Image Processing, 1996, 5 (9): 1293~1301.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133