全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种能保留图像边缘信息的去噪新方法

DOI: 10.11834/jig.2006010245

Keywords: 双密度双树复数小波变换,去噪,边缘检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

图像处理的目标是消除噪声的同时能保留图像所固有的信息.针对保留边缘信息有效去噪问题,提出了双密度双树复数小波变换的图像去噪方法,该方法综合了双密度小波、双树小波和复数小波的优点,具有更好的方向性,将双树复数小波的6个方向,提高到12个方向,并采用了自适应软阈值对小波变换的系数进行处理,消除图像干扰噪声.本文对加噪图像进行去噪仿真试验,并进一步进行边缘检测,仿真试验结果表明,该方法能有效消除图像噪声并保留图像原有边缘信息,与双密度双树小波相比,去噪效果明显改善,均方误差减小了2.4%.

References

[1]  Mallat S.Zero-crossings of a wavelet transform[J].IEEE Transactions on Information Theory,1991,37(4):1019 ~1033.
[2]  Kingsbury N G.The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters[A].In:Proceedings of 8th IEEE Digital Signal Processing Work shop[C],Bryce Canyon,Utah,USA,1998:86 ~ 89.
[3]  Kingsbury N G.Complex wavelets for shift invariant analysis and filtering of signals[J].Applied and Computational Harmonic Analysis,2002,10 (3):234 ~ 253.
[4]  Selesnick IW.The double-density dual-tree[J].IEEE Transactions on IEEE Transactions on Acoustics,Speech,and Signal Processing,2004,52(5):1304 ~ 1314.
[5]  Donoho D L.Denoising by soft-threholding[J].IEEE Transactions on Information Theory,1995,41(3):613~627.
[6]  Simoncell E P,Freeman W T,Adelson E H,et al.Shiftable multiscale transforms[J].IEEE Transactions on Information Theory,1992,38(2):58~ 60.
[7]  Kingsbury N G.Image processing with complex wavelets[J].Philosophical Transactions:Mathematical,Physical and Engineering Sciences,1999,357 (9):2543 ~ 2560.
[8]  Donoho D L,Johnstone IM.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81(2):425~455

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133