全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应遗传算法的点云曲线重建

DOI: 10.11834/jig.200609218

Keywords: 无序点集,曲线重建,自适应遗传算法,SIG图

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于用无序离散点集来重建出曲线曲面模型,在反求工程与计算机视觉中都有着广泛的应用,为此根据实际采样中离散点分布相对集中的特点,提出了一个基于自适应遗传算法的多维无序点集曲线重建算法。该算法针对无序带噪声的空间曲线重建问题,先把点云分布空间网格化,然后在每个网格中用自适应遗传算法搜索出最能代表该网格中点集的特征点,由于每个网格区域中点集分布的不均匀性,因此可根据搜索出来的特征点,利用改进的自适应的SIG(sphere-of-influencegraph)图来对每个特征点进行进一步调整,以便能使得到待重建曲线的型值点,最后利用测地距离函数来确定型值点的拓扑结构,并利用B样条函数来重建曲线。实例证明,无论是2维平面点云还是3维空间点云,该点云重建方法简单可行,特别是对于存在自交情况以及点云具有明显角点的情况亦可以获得满意的结果。

References

[1]  Singh R,Cherkassky V,Papanikolopoulos N.Self-organizing maps for the skeletonizati-on of sparse shapes[J].IEEE Transactions on Neural Networks,2000,11(1):241~248.
[2]  Korsters M.Curvature-Dependent parameterization of curves and surfaces[J].Computer Aided Design,1991,23(8):569~578.
[3]  Sarkar B,Menq C-H.Parameter optimization in approximating curves and surfaces to mea-surement data[J].Computer Aided Geometric Design,1991,8(4):267~290.
[4]  Levin D.The approximation power of moving least-squares[J].Mathematics of Computation,1998,67(224):1517~1531.
[5]  Kegl B,Linder T.Learning and design of principal curves[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):281~297.
[6]  Goshtasby A A.Grouping and parameterizing irregularly spaced points for curve fitting[J].ACM Transactions on Graphics,2000,19(3):185~203.
[7]  Taubin G,Rondfard R.Implicit simplicial models for adaptive curve reconstruction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(3):321~325.
[8]  Zhong Gang,Yang Xun-nian,Wang Guo-zhao.A tracing algorithm for planar curve reconstrucion from a set of unorganized points[J].Journal of Software,2002,13(11):2188~2193.[钟纲,杨勋年,汪国昭.平面无序点集曲线重建的跟踪算法[J].软件学报,2002,13(11):2188~2193.]
[9]  XU Zong-ben,NIE Zan-kan ZHANG Wen-xiu.Almost sure convergence of genetic algorithms:A martingale approach[J].Chinese J.Computer,2002,25(8):785~792.[徐宗本,聂赞坎,张文修.遗传算法的几乎必然强收敛性-鞅方法[J].计算机学报,2002,25(8):785~792.]
[10]  Jan Klein,Gabriel Zachmann.Point cloud surfaces using geometric proximity graphs[J].Computers & Graphics,2004,28(1):839~850.
[11]  Varady T,Martin R R,Cox B J.Reverse engineering of geometric models-an introduction[J].Computer Aided Design,1997,29(4):255~268.
[12]  Yang Xun-nian,Wang Guo-zhao.Planar point set fairing and fitting by arc splines[J].Computer Aided Geometric Design,2001,18(1):35~43.
[13]  Lee I K.Curve reconstruction from unorganized points[J].Computer Aided Geometric Design,2000,17(2):161~177.
[14]  Pottmann H,Randrup T.Rotational and helical surface approximation for reverse engineering[J].Computing,1998,60(4):307~322.
[15]  Fang L,Gossard D C.Multidimensional curve fitting to unorganized data points by nonlinear minimization[J].Computer Aided Design,1995,27(1):48~58.
[16]  Zhong Gang.Yang Xun-nian,Wang Guo-zhao.Planar curve reconstruction from unorganized points through field representation[J].Journal of Computer-aided Design &Computer Graphics,2002,14(11):1074~1079.[钟纲,杨勋年,汪国昭.基于场表示的平面无序点集曲线重建算法[J].计算辅助设计与图形学学报,2002,14(11):1074~1079.]
[17]  Doob J L.Measure Theory[M].New York:Springer-Verlag,1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133