全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正弦函数作用下的Martin过程

DOI: 10.11834/jig.200609217

Keywords: Martin过程,吸引子,Lyapunov指数,混沌

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了弥补单纯Martin过程在描述天气、石油和股市行情等变化过程方面的不足,首先通过对正弦函数作用下的Martin过程进行相图分析,发现该系统状态随着参数的变化而变化,同时经过稳定焦点、倍周期分岔,可将其收缩到混沌吸引子上,且这个状态变化过程会重复出现;然后进一步通过计算机从理论上计算了该系统的最大Lyapunov指数,并通过绘制了分岔图定量地说明了该系统具有混沌行为。

References

[1]  Wang Wei-ning,Wang Bing-hong,Shi Xiao-ping.Chaotic analysis of the fluctuating stock prices[J].The Journal of Quantitative & Technical Economics,2004,(4):141~147.[王卫宁,汪秉宏,史晓平.股票价格波动的混沌行为分析[J].数量经济技术经济研究,2004,(4):141~147.]
[2]  Wang Xin-yuan.Chaos in complex nonlinear systems[M].Beijing:Publishing House of Electronics Industry,2003,6.[王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003,6.]
[3]  Wright J.Method for calculating a lyapunov exponent[J].Physical Review A,1984,29(5):2924.
[4]  Wolf A,Swift J B,Swinney H L,et al.Determining Lyapunov exponents from a time series[J].Physica D,1985,55(10):1082.
[5]  Andrzej Stefanski,Artur Dabrowski,Tomasz Kapitaniak.Evaluation of the largest Lyapunov exponent in dynamical systems with time delay[J].Chaos Solitons & Fractals,2005,23(5):1651.
[6]  Lorenz E N.Deterministic nonperiodic flows[J].Journal of Atmospheric Science,1963,357(20):130.
[7]  Chang Shau-jin,Wright Jon.Transitions and distribution functions for chaotic systems[J].Physical Review A,1981,23(3):1419.
[8]  Barana G,Tsuda I.A new method for computing Lyapunov exponents[J].Physics Letters A,1993,175(6):421.
[9]  Lu Jia,Yang Guo-lai,Hyounkyun Oh,et al.Computing Lyapunov exponents of continuous dynamical systems:method of Lyapunov vectors[J].Chaos Solitons & Fractals,2005,23(5):1879.
[10]  Huang Run-sheng.Chaos & its Applications[M].Wuchang:Publishing House of Wuhan University,2000.[黄润生.混沌及其应用[M].武昌:武汉大学出版社,2000.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133