全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人脸识别中基于核的子空间鉴别分析

DOI: 10.11834/jig.200609209

Keywords: Fisher线性鉴别分析,核函数,正交补空间,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

尽管基于Fisher准则的线性鉴别分析被公认为特征抽取的有效方法之一,并被成功地用于人脸识别,但是由于光照变化、人脸表情和姿势变化,实际上的人脸图像分布是十分复杂的,因此,抽取非线性鉴别特征显得十分必要。为了能利用非线性鉴别特征进行人脸识别,提出了一种基于核的子空间鉴别分析方法。该方法首先利用核函数技术将原始样本隐式地映射到高维(甚至无穷维)特征空间;然后在高维特征空间里,利用再生核理论来建立基于广义Fisher准则的两个等价模型;最后利用正交补空间方法求得最优鉴别矢量来进行人脸识别。在ORL和NUST603两个人脸数据库上,对该方法进行了鉴别性能实验,得到了识别率分别为94%和99.58%的实验结果,这表明该方法与核组合方法的识别结果相当,且明显优于KPCA和Kernelfisherfaces方法的识别结果。

References

[1]  Wilks S S.Mathematical statistics[M].New York:Wiley,1962:577~578.
[2]  Belhumeur Peter N,Hespanha Joao P,Kriengman David J.Eigenfaces vs.Fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis Machine Intelligence,1997,19(7):711~720.
[3]  Liu Cheng-Jun,Wechsler Harry.A shape-and texture-based enhanced Fisher classifier for face recognition[J].IEEE Transactions on Image Processing,2001,10(4):598~608.
[4]  Foley D H,Sammon J W Jr.An optimal set of discriminant vectors[J].IEEE Transactions on Computer,1975,24(3):281~289.
[5]  Scholkopf B,Smola A,Muller K R.Kernel principal component analysis[A].In:W.Gerstner,edi:Proceedings of International Conference on Artificial Neural Networks Lecture Notes in Computer Science[C],Berlin:Springer,1997,1327:583~588.
[6]  Mika S,Ratsch G,Weston J,et al.Fisher discriminant analysis with kernels[J].In:IEEE Neural Networks for Signal Processing Workshop[C],Madison,Wiscosin,USA,1999:41~48.
[7]  Volker Roth,Volker Steinhage.Nonlinear discriminant analysis using kernel functions[A].In:Solla S A,Leen T K,Müller K-R,editors.Advance in Neural Information Processing Systems 12[C].Cambridge,MA,USA:MIT Press,2000:568~574.
[8]  Yang Jian,Frangi Alejandro F,Yang Jing-yu,et al.KPCA Plus LDA:A complete kernel Fisher discriminant framework for feature extraction and recognition[J].IEEE Transactions on Pattern Analysis Machine Intelligence,2005,27(2):230~244.
[9]  Duda R,Hart P.Pattern classification and scene analysis[M].New York:Wiley,1973.
[10]  Sammon J W.An optimal discriminant plane[J].IEEE Transactions on Computer,1970,19(9):826~829.
[11]  Vapnik Vladimir N.The nature of statistical learning theory[M].Berlin,German:Springer,1995.
[12]  Scholkopf B,Smola A,Muller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299~1319.
[13]  Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385~2404.
[14]  Yang Ming Hsuan.Kernel eigenfaces vs.Kernel fisherface:face recognition using kernel method[A].In:Proceedings of Fifth IEEE Interntional Conference Automatic Face and Gesture Recognition[C],Washinton,USA,215~220,May 2002.
[15]  Liu K,Yang J-Y.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817~829.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133