全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空间离群点的模型与跳跃取样查找算法

DOI: 10.11834/jig.200609207

Keywords: 数据挖掘,空间离群点,空间数据库,影响域

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前无论是查找一般的离群点,还是空间离群点,都强调非空间属性的偏离,但在图像处理、基于位置的服务等许多应用领域,空间与非空间属性要综合考虑。为此,首先提出了一个综合考虑两者的空间离群点定义,然后提出了一种新的基于密度的空间离群点查找方法――基于密度的跳跃取样空间离群点查找算法DBSODLS。由于已有的基于密度的离群点查找方法对每一点都要求进行邻域查询计算,故查找效率低,而该算法由于可充分利用已知的邻居信息,即不必计算所有点的邻域,从而能快速找到空间离群点。分析与试验结果表明,该算法时间性能明显优于目前已有的基于密度的算法。

References

[1]  Hawkins D.Identification of outliers[M].London:Chapman and Hall,1980.
[2]  Shekhar S,Lu C T,Zhang P.A unified approach to detecting spatial outliers[J].GeoInformatica,2003,7(2):139~166.
[3]  Knorr E M,Ng R T.A unified notion of outliers:properties and computation[A].In:Proceedings of the International Conference on Knowledge Discovery and Data Mining(KDD)[C],Newport Beach,CA,USA,1997:219~222.
[4]  Knorr E M,Ng R T.Algorithms for mining distance-based outliers in large datasets[A].In:Proceedings of 24th Very Large Data Bases(VLDB) Conference[C],New York,USA,1998:392~403.
[5]  Ramaswamy S,Rastogi R,Kyuseok S.Efficient algorithms for mining outliers from large data sets[A].In:Proceedings of the ACM International Conference on Management of Data(SIGMOD)\'00[C],Dallas,Texas,USA,2000:93~104.
[6]  Arning A,Agrawal R,Raghavan P.A linear method for deviation detection in large databases[A].In:Proceedings of Conference on Knowledge Discovery and Data Mining(KDD)\'96[C],Portland OR,USA,1996:164~169.
[7]  Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying density-based local outliers[A].In:Proceedings of the ACM International Conference on Management of Data(SIGMOD)\'00[C],Dallas,Texas,USA,2000:427~438.
[8]  Ruts I,Rousseeuw P.Computing depth contours of bivariate point clouds[J].Computational Statistics and Data Analysis,1996,23(1):153~168.
[9]  Guha S,Rastogi R,Kyuseok S.ROCK:A robust clustering algorithm for categorical attributes[A].In:Proceedings of 15th International Conference on Data Engineering[C],Sydney,Australia,1999:512~521.
[10]  He Zeng-you,Xu Xiao-fei,Huang Joshua-zhexue,et al.Mining class outliers:concepts,algorithms and applications in CRM[J].Expert Systems with Applications,2004,27(4):681~697.
[11]  Hu Tian-ming,Sung Sam-Y.Detecting pattern-based outliers[J].Pattern Recongition Letters,2003,24(16):3059~3068.
[12]  Haslett J,Brandley R,Craig P,et al.Dynamic graphics for exploring spatial data with application to locating global and local anomalies[J].The American Statistician,1991,(45):234~242.
[13]  更多...
[14]  Haining R.Spatial Data Analysis in the Social and Environmental Sciences[M].Cambridge,UK:Cambridge University Press,1993.
[15]  Luc A.Exploratory Spatial Data Analysis and Geographic Information Systems[A].In:Painho M,editor:New Tools for Spatial Analysis[M],Lisbon,Portugal:ISEGI,EUROSTAT,1994:45~54.
[16]  Beckmann N,Kriegel H-P,Schneider R,et al.The R*-Tree:an efficient and robust access method for points and rectangles[J].SIGMOD Record,1990,19(2):322~331.
[17]  Sander J,Ester E M,Kriegel H,et al.Density-based clustering in spatial databases:the algorithm GDBSCAN and its applications[J].Data Mining and Knowledge Discovery,1998,2(2):169~194.
[18]  Dai H,Srikant R,Zhang C.OBE:Outlier by example[A].In:Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD)[C],Sydney,Australia,2004:222~234.
[19]  Lu C T,Chen D,Kou Y.Algorithms for spatial outlier detection[A].In:Proceedings of the 3rd IEEE International Conference on Data Mining(ICDM)[C],Melbourne,Florida,USA,2003:597~600.
[20]  Preparata F,Shamos M.Computatinal geometry:an introduction[M].New York:Springer Verlag,1998.
[21]  Ester M,Kriegel H P,Sander J,et al.A densitybased algorithm for discovering clusters in large spatial databases[A].In:Proceedings of Conference on Knowledge Discovery and Data Mining(KDD)\'96[C],Portland OR,USA,1996:226~231.
[22]  Nanopoulos A,Theodoridis Y,Manolopoulos Y.C2P:Clustering based on closest pairs[A].In:Proceedings of Very Large Data Bases(VLDB)\'01[C],Rome Italy,2001:331~340.
[23]  He Zeng-you,Xu Xiao-fei,Deng S.Discovering cluster-based local outliers[J].Pattern Recognition Letters,2003,24(9~10):1642~1650.
[24]  Aggarwal C,Yu P.Outlier detection for high dimensional data[A].In:Proceedings of the ACM SIGMOD\'01 Internation Conference on Management of Data[C],Santa Barbara,CA,USA,2001:37~46.
[25]  Panatier Y.Variowin,software for spatial data analysis in 2D[M].New York:Springer-Verlag,1996.
[26]  Luc A.Local indicators of spatial association:LISA[J].Geographical Analysis,1995,27(2):93~115.
[27]  Katayama N,Satoh S.The SR-tree:an index structure for high-dimensional nearest neighbor queries[J].SIGMOD Record,1997,26(2):369~380.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133