全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有理曲线曲面的降阶逼近

DOI: 10.11834/jig.200608180

Keywords: NURBS,有理Bezier,降阶,二次规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于齐次坐标空间,提出了一种NURBS曲线曲面和有理Bezier曲线曲面降阶的简便方法。在齐次坐标空间中,使降阶后的曲线曲面与原曲线曲面的差的L2范数达到极小,将有理曲线曲面降多阶问题转化为二次规划问题求解,并给出了误差估计。实验结果表明,该方法计算速度快,降阶逼近效果好。

References

[1]  CHEN Guo-dong,WANG Guo-jin.Degree reduction approximation of Bezier curves by generalized inverse matrices[J].Journal of Software,2001,12(3):435~439.[陈国栋,王国瑾.基于广义逆矩阵的Bezier曲线降阶逼近[J].软件学报,2001,12(3):435~439.
[2]  HU Shi-min,ZHENG Guo-qin,SUN Jia-guang.Approximate degree reduction of rectangular Bezier surface[J].Chinese Journal of Software Research,1997,4(4):353 ~361.
[3]  GUO Qing-wei,ZHU Gong-qin.New approach to approximate multidegree reduction of tensor product Bezier surfaces[J].Journal of Computer-Aided Design & Computer Graphics,2004,16 (6):778~782.[郭清伟,朱功勤.张量积Bezier曲面降多阶逼近的方法[J].计算机辅助设计与图形学学报,2004,16(6):778~782.
[4]  QIN Kai-huai,HUANG Hai-kun.New algorithm for degree reduction of B-spline curves[J].Chinese Journal of Computers,2000,23(3):306~310.[秦开怀,黄海昆.B样条曲线降阶新方法[J].计算机学报,2000,23(3):306~310.
[5]  ZHANG Cai-ming,HE Jun,ZHANG Rui.Degree reduction of B-spline curves using perturbations constraint and least squares approximation[J].Journal of Computer-Aided Design & Computer Graphics,2004,16(10):1392~1395.[张彩明,何军,张锐.扰动约束和最佳平方逼近的B样条曲线的降阶[J].计算机辅助设计与图形学学报,2004,16(10):1392~1395.
[6]  KANG Bao-sheng,SHI Mao,ZHANG Jing-qiao.Degree reduction of rational Bezier Curves[J].Journal of Software,2004,15 (10):1522~1527.[康宝生,石茂,张景峤.有理Bezier曲线的降阶[J].软件学报,2004,15(10):1522~1527.
[7]  HU Shi-min,SUN Jia-guang,JIN Tong-guang,et al.Approximate degree reduction of Bezier curves[J].Tsinghua Science and Technology,1998,3(2):997 ~ 100.
[8]  BAI Bao-gang,JIN Xiao-gang,FENG Jie-qing.Adaptive degree reduction of cubic Bezier curves[J].Journal of Computer-Aided Design & Computer Graphics,2004,16 (11):1600 ~ 1602.[白宝钢,金小刚,冯结青.三次Bezier曲线的自适应降阶[J].计算机辅助设计与图形学学报,2004,16(11):1600~1602.
[9]  HU Shi-min,ZUO Zheng,SUN Jia-guang.Approximate degree reduction of triangular Bezier surfaces[J].Tsinghua Science and Technology,1998,3(2):1001 ~ 1004.
[10]  ZHOU Deng-wen,LIU Fang,JU Tao,et al.New method of approximate degree reduction of Bezier surfaces[J].Journal of Computer-Aided Design & Computer Graphics,2002,14 (6):553~556.[周登文,刘芳,居涛等.张量积Bezier曲面降阶逼近的新方法[J].计算机辅助设计与图形学学报,2002,14(6):553~556.
[11]  YONG Jun-hai,HU Shi-min,SUN Jia-guang.Degree reduction of uniform B-spline curves[J].Chinese Journal of Computers,2000,23(5):537~540.[雍俊海,胡事民,孙家广.均匀B样条曲线的降阶[J].计算机学报,2000,23(5):537~540.
[12]  PAN Ri-jing,YAO Zhi-qiang,PAN Ri-hong.Degree reduction formula and approximate of degree reduction of B-spline curves[J].Chinese Journal of Computers,2003,26(10):1254 ~ 1259.[潘日晶,姚志强,潘日红.B样条曲线的降阶公式及近似降阶方法[J].计算机学报,2003,26(10):1254~1259.
[13]  Sederberg T W,Chang G Z.Best linear common divisor for approximation degree reduction[J].Computer Aided Design,1993,25(3):163 ~168.
[14]  CHENG Min,WANG Guo-jin.Multi-degree reduction of NURBS curves based on their explicit matrix representation and polynomial approximation theory[J].Science in China,2004,47 (1):44 ~ 54.
[15]  YUAN Ya-xiang,SUN Wen-yu.Optimization theory and method[M].Beijing:Science Press,1997.[袁亚湘,孙文瑜著.最优化理论与方法[M].北京:科学出版社,1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133