全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Chebyshev多项式的消除Gibbs伪影的快速算法

DOI: 10.11834/jig.200608192

Keywords: 磁共振成像,Gibbs环状伪影,部分k空间数据,逆多项式重建方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在磁共振成像中通常通过减少相位编码次数来缩短数据采集时间,这样只能得到部分原始k空间数据,运用傅里叶变换成像时会在图像中产生常见的Gibbs环状伪影。Gegenbauer重建方法是一种能够有效消除Gibbs环状伪影并能保持高分辨率的图像重建方法,但是这种方法的缺点在于重建时间长且参数选择必须满足严格的限制且对图像重建质量影响较大。本文提出的基于Chebyshev多项式的逆多项式重建方法是针对Gegenbauer方法的改进算法,在改进原有算法不足的同时有效提高了重建精度。实验结果验证了该算法的有效性。

References

[1]  Gelb A.Parameter optimization and reduction of round off error for the Gegenbauer reconstruction method[J].Journal of Scientific Computing,June 2004,20(3):433 ~ 459.
[2]  Gelb A,Tadmor E.Detection of edges in spectral data Ⅱ.nonlinear enhancement[J].Society for Industrial and Applied Mathematics,2000,38(4):1389 ~ 1408.
[3]  Archibald R,Gelb A.A Method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity[J].IEEE Transactions on Medical Imaging,2002,21(4):100 ~ 113.
[4]  Shizgal B D,Jung J H.Towards the resolution of the Gibbs phenomena[J].Journal of Computational and Applied Mathematics,2003,161(1):41 ~65.
[5]  Gelb A,Tadmor E.Detection of edges in spectral data[J].Applied and Computational Harmonic Analysis,1999,7(1):101 ~ 135.
[6]  Zhou Yun-ping,Lin Hua.Signal and systems analysis[M].Beijing:Science Publishing Company,2003:104~107.[邹云屏,林桦著.信号与系统分析[M].北京:科学出版社,2003:104~107.]
[7]  Gottlieb D,Shu C W.On the Gibbs phenomenon and its resolution[J].SIAM Review,1997,39(4):644 ~668.
[8]  Jung J H,Shizgal B D.Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon[J].Journal of Computational and Applied Mathematics,2004,172(1):131 ~ 151.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133