全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

监控视频运动目标检测减背景技术的研究现状和展望

DOI: 10.11834/jig.200607158

Keywords: 监控视频,目标检测减背景,背景建模

Full-Text   Cite this paper   Add to My Lib

Abstract:

在很多计算机视觉应用中,一个基础而关键的任务是从视频序列中确定运动目标,其中对于固定摄像机的监控视频运动目标的检测,最常用的方法是减背景技术。其思想是将视频帧与一个背景模型做比较,其中区别较大的像素区域被认为是运动目标。但由于构建背景模型需要考虑光照变化等很多因素,因此开发一个好的减背景算法面临很多挑战。为了使人们对该技术有个初步了解,该文首先对利用减背景技术实现运动目标检测的过程、目前各种典型背景建模算法的原理和优缺点做了较为详细的阐述和归纳,然后总结了各种减背景算法的总体特点,并结合实验和文献资料对部分算法进行了对比评价,最后指出了减背景技术的未来研究重点和发展方向。

References

[1]  Mittal A,Huttenlocher D.Scene modeling for wide area surveillance and image synthesis[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Island,SC,USA,2000:160 ~ 167.
[2]  Wren C,Azabayejani A,Darrel T,et al.Pfinder:Real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19 (7):780 ~ 785.
[3]  Stauffer C,Grimson W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~ 757.
[4]  Cucchiara R,Piccardi M,Prati A.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337 ~ 1342.
[5]  Fuentes L,Velastin S.From tracking to advanced surveillance[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:121 ~ 124.
[6]  Toyama K,Krumm J,Brnmitt B,et al.Wallflower:Principles and practice of background maintenance[A].In:Proceedings of International Conference on Computer Vision[C],Corfu,Greece,1999:255~261.
[7]  Haritaoglu I,Harwood D,Davis L.W4:Real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):809 ~ 830.
[8]  Prati A,Mikic I,Trivedi M,et al.Detecting moving shadows:algorithms and evaluation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(7):918 ~923.
[9]  Anderson C,Bert P,Vander Wal G.Change detection and tracking using pyramids transformation techniques[A].In:Proceedings of SPIE Conference on Intelligent Robots and Computer Vision[C],Cambridge,MA,USA,1985,579:72~78.
[10]  Lo B,Velastin S.Automatic congestion detection system for underground platforms[A].In:Proceedings of International Symposium on Intelligent Multimedia,Video,and Speech Processing[C],Hong Kong,2001:158 ~ 161.
[11]  Haritaoglu I,Davis Larry S,Harwood D.W4 who? when? where?what? a real time system for detecting and tracking people[A].In:Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition[C],Nara,Japan,1998:222 ~ 227.
[12]  Koller D,Weber J,Malik J.Robust multiple car tracking with occlusion reasoning[A].In:Proceedings of European Conference on Computer Vision[C],Stockholm,Sweden,1994:189 ~ 196.
[13]  Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
[14]  Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
[15]  Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
[16]  Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
[17]  Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
[18]  Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.
[19]  Fukunaga K,Hostetler L D.The estimation of the gradient of a density function,with applications in pattern recognition[J].IEEE Transactions on Information Theory,1975,21(1):32 ~40.
[20]  Han B,Comaniciu D,Davis L.Sequential kernel density approximation through mode propagation:applications to background modeling[A].In:Proceedings of Asian Conference on Computer Vision[C],Jeju Island,Korea,2004.
[21]  Jabri S,Duric Z,Wechsler H,et al.Detection and location of people in video images using adaptive fusion of color and edge information[A].In:Proceedings of International Conference on Pattern Recognition[C],Barcelona,Spain,2000:627 ~ 630.
[22]  Wada T,Matsuyama T.Appearance sphere:Background model for pan-tilt-zoom camera[A].In:Proceedings of International Conference on Pattern Recognition[C],Vienna,Austria,1996:718 ~ 722.
[23]  Kang J,Cohen I,Medioni G.Continuous tracking within and across camera streams[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Madison,WI,USA,2003:267~272.
[24]  Cutler R,Davis L.View-based detection[A].In:Proceedings of International Conference on Pattern Recognition[C],Brisbane,Australia,1998:495 ~ 500.
[25]  KaewTraKulPong P,Bowden R.An improved adaptive background mixture model for real-time tracking with shadow detection[A].In:Proceedings of the 2nd European Workshop on Advanced Video-Based Surveillance Systems[C],Kingston,UK,2001:149 ~ 158.
[26]  Harville M.A framework for high-level feedback to adaptive,perpixel,mixture-of-Gaussian background models[A].In:Proceedings of European Conference on Computer Vision[C],Copenhagen,Denmark,2002,3:543~560.
[27]  Elgammal A,Harwood D,Davis L.Non-parametric model for background subtraction[A].In:Proceedings of International Conference on Computer Vision[C],Kerkyra,Greece,1999:751 ~ 767.
[28]  Boult T E,Micheals R,Gao X,et al.Frame-rate omnidirectional surveillance and tracking of camouflaged and occluded targets[A].In:Proceedings of the 2nd IEEE Workshop on Visual Surveillance[C],Fort Collins,Colorado,USA,1999:48 ~ 55.
[29]  Heikkila J,Silven O.A real-time system for monitoring of cyclists and pedestrians[A].In:Proceedings of IEEE Workshop on Visual Surveillance[C],Fort Collins,Colorado,USA,1999:246 ~ 252.
[30]  Gutchess D.A background model initialization algorithm for video surveillance[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001:744 ~ 740.
[31]  Lipton A,Fujiyoshi H,Patil R.Moving target classification and tracking from real-time video[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Princeton,NJ,USA,1998:8~14.
[32]  Collins R,Lipton A J,Kanade T,et al.A system for video surveillance and monitoring:VSAM final report[R].Technical Report:CMU-RI-TR-00-12,Carnegie Melon University,Pittsburgh,Peen,America,2000.
[33]  Ai Hai-zhou,Lv Feng-jun.Changes detection and segmentation in visual surveillance[J].Computer Engineering and Application,2000,37(5):75~77.[艾海舟,吕凤军.面向视觉监视的变化检测与分割[J].计算机工程与应用,2000,37(5):75~77.]
[34]  更多...
[35]  Lin Hong-wen,Tu Dan,Li Guo-hui.Moving objects detection method based on statistical background model[J].Computer Engineering,2003,29(16):97~99.[林洪文,涂丹,李国辉.基于统计背景模型的运动目标检测方法[J].计算机工程,2003,29(16):97~99.]
[36]  Gloyer B,Aghajan H,Siu K Y,et al.Video-based freeway monitoring system using recursive vehicle tracking[A].In:Proceedings of SPIE Symposium on Electronic Imaging:Image and Video Processing[C],San Jose,CA,USA,1995,2421:173 ~ 180.
[37]  Zhou Q,Aggarwal J.Tracking and classifying moving objects from videos[A].In:Proceedings of IEEE Workshop on Performance Evaluation of Tracking and Surveillance[C],Hawaii,USA,2001.
[38]  Halevy G,Weinshall D.Motion of disturbances:detection and tracking of multi-body non-rigid motion[J].Machine Vision and Applications,1999,11(3):122~ 137.
[39]  Karmann K P.Moving object recognition using an adaptive background memory[A].In:Cappellini V,ed.Time-Varying Image Processing and Moving Object Recognition[M].Amsterdam,the Netherlands:Elsevier Science Publishers,1990:289 ~ 307.
[40]  Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
[41]  Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
[42]  Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
[43]  Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
[44]  Oliver N,Rosario B,Pentland A.A Bayesian computer vision system for modeling human interactions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):831 ~ 843.
[45]  Yang Chang-jiang,Duraiswami R,DeMenthon D.Mean-shift analysis using quasi-newton methods[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003,3:447 ~ 450.
[46]  Kim K,Chalidabhongse T H,Harwood D,et al.Background modeling and subtraction by Codebook construction[A].In:Proceedings of IEEE International Conference on Image Processing[C],Singapore,2004:3061 ~ 3064.
[47]  Matsuyama T,Ohya T,Habe H.Background subtraction for nonstationary scenes[A].In:Proceedings of the 4th Asian Conference on Computer Vision[C],Taipei,China,2000:662 ~667.
[48]  Cheung S C,Kamath C.Robust techniques for background subtraction in urban traffic video[A].In:Proceedings of SPIE Electronic Imaging:Visual Communications and Image Processing[C],San Jose,California,USA,2004,1:881 ~892.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133