全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于可拒识-双层支持向量分类器的微钙化点检测

DOI: 10.11834/jig.200605108

Keywords: 支持向量分类器,微钙化点检测,支持向量域描述,拒识性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

为克服医学图像微钙化点检测中假阳性高的缺点,构造了一种带拒识能力的双层支持向量模型分类器,用于钙化点检测.检测时,首先利用基于最大间隔超平面的支持向量分类器(SVC)对输入模式进行分类判决;然后通过求取真实钙化点样本特征空间最小的包含球形边界来得到钙化点样本的球形支持向量域表示(SVDD);接着利用钙化点的支持向量域表示对输入模式进行拒识或接受处理;最后利用SVC与SVDD两个分类器的结果来进行综合判决.仿真实验结果表明,该算法在不影响微钙化点的检出率的情况下,可部分解决假阳性高的问题.

References

[1]  Vapnik Vladimir N.The nature of statistical learning theory[M].New York,NY:Wiley,1998,chapter 5.
[2]  EI-Naqa Issam,YANG Yong-yi,Wernick Miles N,et al.A support vector machine approach for detection of microcalcifications[J].IEEE Transactions on Medical Imaging,2002,21 (12):1552 ~1563.
[3]  Tax David M J,Duin Robert P W.Support vector data description[J].Machine Learning,2004,54(1):45 ~ 66.
[4]  CHAO Yuan,David Casasent.A novel support vector classifier with better rejection performance[A].In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Madison,WI,United States,2003:1063 ~ 1069.
[5]  YANG Guang-zheng,Huang Thomas S.Human face detection in a complex background[J].Pattern Recognition,1994,27 (1):58 ~ 63.
[6]  WAN Bai-kun,WANG Rui-ping,ZHU Xin,et al.Principles of SVM and its application in micro-calcifications detection in mammogram[J].Acta Electronic Sinica,2004,32 (4):587 ~ 590.[万柏坤,王瑞平,朱欣等.SVM算法及其在乳腺X片微钙化点自动检测中的应用[J].电子学报,2004,32(4):587~590.]
[7]  Rizvi S A,Saasawi T N,Nasrabadi N M.A clutter rejection technique for FLIR imagery using region based principal component analysis[J].Pattern Recognition,2000,33(11):1931 ~ 1933.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133