全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模块2DPCA的人脸识别方法

DOI: 10.11834/jig.20060497

Keywords: 线性鉴别分析,模块2DPCA,特征抽取,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了模块2DPCA(two-dimensionalprincipalcomponentanalysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于图像向量的鉴别方法(比如PCA)相比,该方法在特征抽取之前不需要将子图像矩阵转化为图像向量,能快速地降低鉴别特征的维数,可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,模块2DPCA是2DPCA的推广。在ORL和NUST603人脸库上的试验结果表明,模块2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。

References

[1]  Pentland A.Looking at people:Sensing for ubiquitous and wearable computing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (1):107 ~ 119.
[2]  Jin Zhong,Yang J Y,Hu Z S,et al.Face recognition based on uncorrelated discriminant transformation[J].Pattern Recognition,2001,34(7):1405 ~ 1416.
[3]  Yu Hua,Yang Jie.A direct LDA algorithm for high-dimensional data-with application to face recognition[J].Pattern Recognition,2001,34 (10):2067 ~ 2070.
[4]  Yang Jian,Yang Jing-yu.Uncorrelated image projection discriminant analysis and face recognition[J].Journal of Computer Research and Development,2003,40(3):447~452.[杨键,杨静宇.具有统计不相关性的图像投影鉴别分析及人脸识别[J].计算机研究与发展,2003,40(3):447~452.]
[5]  Jin Zhong.Research on feature extraction of face images and feature dimensionality[D].Nanjing:Nanjing University of Science and Technology,1999:53~58.[金忠.人脸图像特征抽取与维数研究[D].南京:南京理工大学,1999:53~58.]
[6]  Bian Z Q,Zhang X G.Pattern Recognition (2th edition)[M].Beijng:Tsinghua University Press,1999:176~177.[边肇祺,张学工著.模式识别(第2版)[M].北京:清华大学出版社,1999:176~177.]
[7]  Peter N Belhumeur,Joao P Hespanha,David J Kriengman.Eigenfaces vs fisherfaces:recognition using class specific linearprojection[J].IEEE Transactions on Pattern Anal ysis and Machine Intelligence,1997,19 (7):711 ~ 720.
[8]  Hong Z Q,Yang J Y.Optimal discriminant plane for a small number of samples and design method of classifier on the plane[J].Pattern Recognition,1991,24(4):317 ~324.
[9]  Liu K,Cheng Y Q,Yang J Y.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6 (5):817 ~ 829.
[10]  Chen L F,Mark Liao Y H,Ko M T,et al.A new LDA-based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33(10):1713 ~ 1726.
[11]  Yang Jian,Yang Jing-yu,Ye Hui.Theory of fisher linear discriminant analysis and its application[J].Acta Automatic Sinica,2003,29(4):482~493.[杨键,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):482~493.]
[12]  Yang Jian,Yang Jing-yu.Why can LDA be performed in PCA transformed space?[J].Pattern Recognition,2003,36 (2):563 ~566.
[13]  Liu K,Cheng Y-Q,Yang J Y,et al.Algebraic feature extraction for image recognition based on an optimal discriminant criterion[J].Pattern Recognition,1993,26 (6):903 ~ 911.
[14]  Yang Jian,Zhang David,Yang Jing-yu.Two-dimensional PCA:A new approach to appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131 ~ 137.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133