全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

训练样本数目选择对面向对象影像分类方法精度的影响

DOI: 10.11834/jig.20100708

Keywords: 分类,面向对象,训练样本,遥感影像

Full-Text   Cite this paper   Add to My Lib

Abstract:

面向对象遥感影像分类中的样本选择与基于像素的方法有很大不同,基于统计学理论,研究了面向对象方法的样本数量选择问题。首先,针对面向对象方法的特点,对影像特征空间进行分析,结果表明面向对象方法中要求训练样本的数量可以显著地减少。然后,在遥感影像分类实验中,借助样本数量与波段数目的关系,验证了理论分析的结果。

References

[1]  Baatz M.Benz U.Dehghani S Ecognition Professional User Guide 2009
[2]  陈云浩,冯通,史培军,王今飞,基于面向对象和规则的遥感影像分类研究,武汉大学学报(信息科学版),2006(4).
[3]  Hughes G F,On the mean accuracy of statistical pattern recognizers,IEEE Transactions on Information theory,1968(1).
[4]  Foody G M,McCulloch M B,Yates W B,The effect of training set size and composition on artificial neural network classification,International Journal of Remote Sensing,1995(9).
[5]  Foody G M,Mathur A,The use of small training sets containing mixed pixels for accurate hard image classification:Training on mixed spectral responses for classification by a SVM,Remote Sensing of Environment,2006(2).
[6]  Van Niel T G,McVicar T R,Datt B,On the relationship between training sample size and data dimensionality:Monte Carlo aoalysis of broadband multi-temporal classification,Remote Sensing of Environment,2005(4).
[7]  明冬萍,骆剑承,沈占锋,汪闽,盛昊,高分辨率遥感影像信息提取与目标识别技术研究,测绘科学,2005(3).
[8]  Geneletti D,Gorte B G H,A method for object-oriented land cover classification combining Landsat TM data and aerial photographs,International Journal of Remote Sensing,2003(6).
[9]  Foody G M,Arora M K,An evaluation of some factors affecting the accuracy of classification by an artificial neural network,International Journal of Remote Sensing,1997(4).
[10]  Shahshahani B M,Landgrebe D A,The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon,IEEE Transactions on Geoscience and Remote Sensing,1994(5).
[11]  Piper J,The effect of zero feature correlation assumption on maximum likelihood based classification of chromosomes,Signal Processing,1987(1).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133