全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种改进的Voronoi图增量构造算法

DOI: 10.11834/jig.20100619

Keywords: Voronoi图,Delaunay三角化,增量法,扫描线法,右凸链

Full-Text   Cite this paper   Add to My Lib

Abstract:

Voronoi图是计算几何中的一种重要几何结构,也是计算几何的重要研究内容之一,如今已经在图形学、地理信息系统、机械工程、机器人等领域得到广泛应用。增量法是最常用的构造Voronoi图的方法,但一般实现方法中点的定位时间比较长。扫描线算法可以视为一种特殊的增量法,时间复杂度为O(nlogn),但需要构造比较复杂的数据结构。为了更有效地构建Voronoi图,提出了一种改进的Voronoi图增量构造算法,该算法是通过对已有的生成Voronoi图的增量法进行分析,并结合它们的优点,采用扫描线的方式,通过右凸链的结构来定位新插入的点,实现了Voronoi图的逐步构造。和扫描线算法类似,其时间复杂度为O(nlogn),但算法更简洁,且便于理解和编程实现。

References

[1]  Goodman Jacob E,0\'Rourke Joseph.Handbook of Discrete and Computational Geometry (2nd edition)[M],Boca Raton,FL,USA:Chapman & Hall/CRC,2004.
[2]  De Berg M,Kreveld M,Van Ovemnars M,et al.Computational Geometry:Algorithms and Applications (2nd Edition)[M].New York,USA; Springer-Verlag Inc,2000.
[3]  Fang Tsungpao,Piegl L A.Delaunay triangulation using a uniform grid[J].IEEE Computer Graphics and Applications,1993,13(3):36-47.
[4]  Shamos M I,Hoey D.Closest-point problems[C]//Proceedings 16th Annual Symposium on Foundations of Computer Science,New York,USA:IEEE Computer Society,1975; 151-162.
[5]  Franz Aurenhammer.Voronoi diagrams-A survey of a fundamental geometric data structure[J].ACM Computing Surveys,1991,23 (3):345-405.
[6]  Fortune S.A sweepline algorithm for Voronoi diagrams[J].Algorithmic,1987,2(1-4):153-174.
[7]  Guibas L J,Stolfi J S.Ruler,compass,and computer:The design and analysis of geometric algorithms[C]//Earnshaw R A (ed):Proceedings Theoretical Foundations of Computer Graphics and CAD,Berlin,German; New York,USA; Springer-Veralag,1988:111-165.
[8]  Yang Chenglei,Wang Jiaye,Meng Xiangsu.Upper bounds of the numbem of vertices and edges in outer Voronoi diagram of polygon[J].Journal of Computer Aided Design and Computer Graphics,2005,17(4):689-693.[杨承磊,汪嘉业,孟祥旭.多边形外部Voronoi网顶点和边数的上界[J].计算机辅助设计与网形学学报,2005,17(4):689-693].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133