全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无监督学习的无线胶囊内诊镜视频分类方法

DOI: 10.11834/jig.20111113

Keywords: 视频分类,无监督学习,概率隐语义模型,尺度不变特征变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来在对病人的消化道系统检查中,无线胶囊内诊镜(WCE)是一种最新技术,可以让医生直接观察到病人的病灶所在,但是对于消化道系统中的口腔、胃、小肠和大肠的WCE视频分类却是难点所在。相关研究中均采用通过人工标记的训练库的有监督学习方法。为了在WCE训练数据中获得高识别率,提出一种无监督学习方法,它利用融合颜色信息的尺度不变特征转换(SIFT)获取局部特征,再利用概率隐语义分析模型(pLSA)数据训练中进行语义内容分析。实验结果表明,在WCE图像分类中本方法与当前最新的监督分类方法一样可以获得高准确率。

References

[1]  Krishnan S,Wang P,Kugean C,et al.Classification of endoscopic images based on texture and neural network[C]//Proc.of 23rd Annual IEEE Int.Conf.in Engineering in Medicine and Biology.Washington DC:IEEE Press,2001:3691-3695.
[2]  Gay G,Delvaux M,Key J.The role of video capsule endoscopy in the diagnosis of digestive diseases:A review of current possibilities[J].Endoscopy,2004,36(3):913-920.
[3]  Swain P.Wireless capsule endoscopy and Crohn’s disease[J].Gut,2005,54(4):323-326.
[4]  Culliford A,Daly J,Diamond B,et al.The value of wireless capsule endoscopy in patients with complicated celiac disease[J].Gastrointestinal Endoscopy,2005,62(2):55-61.
[5]  Maieron A.Multicenter retrospective evaluation of capsule endoscopy in clinical routine [J].Endoscopy,2004,36(3):864-868.
[6]  Coimbra M T,Cunha J P S.MPEG-7 visual descriptors-contributions for automated feature extraction in capsule endoscopy[J].IEEE Transactions on Circuits and Systems for Video Technology,2006,16(4):628-637.
[7]  Boulougoura M,Wadge E,Kodogiannis V S,et al.Intelligent systems for computer-assisted clinical endoscopic image analyses[C]//Proc.of 2nd Int.Conf.Biomed.Engineering.Innsbruck,Austria :IEEE Press,2005:405-412.
[8]  Mackiewicz M,Berens J,Fisher M.Wireless capsule endoscopy color video segmentation[J].IEEE Transactions on Medical Imaging,2008,27(2):1123-1130.
[9]  Howarth P,Yavlinsky A,Heesch D,et al.Medical image retrieval using texture,locality and color[C]//Proc.Cross Language Evaluation Forum.Washington DC,USA:IEEE Press,2005(2):740-749.
[10]  Wang P,Krishman S,Kugean C,et al.Classification of endoscopic images based on texture and neural network[C]//Proc.23rd Annu.Int.Conf.IEEE Eng.Med.Biol.Sci.Washington DC,USA:IEEE Press,2001:3691-3695.
[11]  Spyridonos P,Vilarino F,Vitria J,et al.Anisotropic feature extraction from endoluminal images for detection of intestinal contractions[C]//Proc.MICCAI.Washington DC,USA:IEEE Press,2006:161-168.
[12]  Cunha J,Coimbra M,Campos P,et al.Automated topographic segmentation and transit time estimation in endoscopic capsule exams[J].IEEE Trans.Medical.Image,2008,27(1):19-27.
[13]  Hofmann T.Unsupervised learning by probabilistic latent semantic analysis[J].Machine Learning,2001,42(2):177-196.
[14]  Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[15]  Berens J.Image Indexing Using Compressed Color Histograms[M].Springer-Verlag,Norwich:Spinger,2002.
[16]  Coimbra M,Campos P,Cunha J P S.MPEG-7 visual descriptors― Contributions for automated feature extraction in capsule endoscopy[J].IEEE Trans.Circuits Syst.Video Technology,2006,16(4):628-637.
[17]  Jurie F,Triggs B,Creating efficient codebooks for visual recognition[C]//Proceedings of International Conference on Computer Vision.Washington DC,USA:IEEE Press,2005:458-465.
[18]  Bosch A,Zisserman A,Muoz X.Scene classification using a hybrid generative discriminative approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(3):712-727.
[19]  Linde Y,Buzo A,Gray R M.An algorithm for vector quantizer design[J].IEEE Transactions on Communications,1980,28(3):84-95.
[20]  Oliva A,Torralba A.Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(1):145-175.
[21]  更多...
[22]  Niebles J,Wang H,Li F.Unsupervised learning of human action categories using spatial-temporal words[J].International Journal of Computer Vision,2008,32(4):1223-1230.
[23]  Lloyd S P.Least square quantization in PCM[J].IEEE Transactions on Information Theory,1982,28(2):129-137.
[24]  Li Feifei,Perona P.A Bayesian hierarchical model for learning natural scene categories[C]//IEEE Conference on Computer Vision and Pattern Recognition.Washington D C,USA:IEEE Press,2005:524-531.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133