全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

区域GMM聚类的SAR图像分割

DOI: 10.11834/jig.20111120

Keywords: 图像分割,分水岭,高斯混合模型,EM算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

高斯混合模型(GMM)聚类算法近年来广泛应用于图像分割领域。但在SAR图像分割中,由于忽略了图像像素间的空间相关性,使其对相干斑噪声十分敏感。提出一种基于区域的GMM聚类算法,它将空间相关性引入聚类分类中,利用分水岭分割得到基本同质区域,计算区域的灰度均值作为GMM聚类算法的输入样本,将聚类特征从像素水平提升到区域水平,减少了噪声对分割结果的影响;并将自身反馈机制引入期望最大化(EM)算法中,进一步提高了GMM模型参数估计的精度。还对合成图像和真实SAR图像进行了分割实验,结果表明新算法可有效地提高分割的准确性。

References

[1]  Song Jianshe,Zheng Yongan,Yuan Lihai.Understanding and Applications of Synthetic Aperture Radar Images[M].Beijing:Science Press, 2008:8,105-123.[宋建社, 郑永安, 袁礼海.合成孔径雷达图像理解与应用[M].北京:科学出版社, 2008:8,105-123.]
[2]  Otsu N.A threshold selection method from gray-Level histograms[J]. IEEE Transactions on Systems,Man and Cybernetics, 1979, 9(1):62-66.
[3]  Adams R,Bischof L.Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6):641-647.
[4]  Fraley C, Raftery A E. How many clusters ? Which clustering method ? Answers via model-based cluster analysis[J]. The Computer Journal, 1998, 41(8):578-588.
[5]  Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society Series B (Methodological), 1977, 39(1):1-38.
[6]  Ren Xiaofeng, Malik J. Learning a classification model for segmentation[C]// Proceedings of the ninth IEEE International Conference on Computer Vision. Nice, France: Institute of Electrical and Electronics Engineers Inc., 2003,1:10-17.
[7]  Oliver C,Quegan S.Understanding Synthetic Aperture Radar Image[M]. Boston London:Assech House, 1998.
[8]  Coleman G B,Andrews H C. Image segmentation by clustering [J]. Proceedings of the IEEE, 1979, 67(5):773-785.
[9]  Bovik A C.On detecting edges in speckle imagery[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(10):1618-1627.
[10]  Wang Xiaofeng, Zhang Xiaoping. A new localized superpixel Markov random field for image segmentation[C]// 2009 IEEE International Conference on Multimedia and Expo.New York: IEEE Computer Society,2009:642-645.
[11]  Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6):583-598.
[12]  Biernacki C. Initializing EM using the properties of its trajectories in Gaussian mixtures[J]. Statistics and Computing, 2004, 14(3):267-279.
[13]  Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-698.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133