Manolakis D,Marden D.Dimensionality reduction of hyperspectral imaging data using local principal components transforms[C]// Proceedings of SPIE,Washington D C,USA:SPIE,2004,5425:393-401.
[2]
Jia Xiuping,Richards J A.Segemted pricipal comonpents transformation for efficient hyperspectral remote-sensing image display and classification[J].IEEE Trans.on Geoscience and Remote Sensing,1999,37(1): 538-542.
[3]
Scholkopf B, Smola A,Miiller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5): 1299-1319.
[4]
Wu Ningning,Wang Jing.Factor analysis based anomaly detection[C]// Proceedings of the IEEE,Worshop on Information Assurance.Washington D C:IEEE Press,2003,108-115.
[5]
Liu Xiao gang,Zhao Hui jie,Li Na.Feature extraction based on fractal spectrum for hyperspectral data[J].Acta Optical Sinic,2009,29(3): 844-848.刘小刚,赵慧洁,李娜.基于多重分形谱的高光谱数据特征提取[J].光学学报,2009,29(3): 844-848.
Li Na.Research on accurate modeling and its applications for hyperspectral remote sensing data [D].Beijing: Beihang University,2008: 23-33.[李娜,高光谱遥感数据精确建模与应用处理技术研究[D].北京:北京航空航天大学,2008: 23-33.]