Li K, Gan L, Ling C. Orthogonal symmetric Toeplitz matrices for compressed sensing:statistical isometry property[EB/OL]. (2012-10-24).[2013-6-20] http://arxiv.org/abs/1012.5947.
[2]
Yin W, Morgan S, Yang J, et al. Practical compressive sensing with Toeplitz and circulant matrices, TR10-01. Houston:Rice University CAAM Department, 2010.
[3]
Candès E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509.
[4]
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[5]
Candès E J, Tao T. Near-optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12):5406-5425.
[6]
Candès E J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain:European Mathematical Society Publishing House, 2006:1433-1452.
[7]
Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted L1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5-6):877-905.
[8]
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1):259-268.
[9]
Black M J, Sapiro G, Marimont D H, et al. Robust anisotropic diffusion[J]. IEEE Transactions on Image Processing, 1998, 7(3):421-432.
[10]
Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2):490-530.
[11]
Zhang X, Burger M, Bresson X, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[J]. SIAM Journal on Imaging Sciences, 2010, 3(3):253-276.
[12]
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
[13]
Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16(2):349-366.
[14]
Liu H Y, Wei Z H, Zhang Z R. Improved kernel regression model for image restoration[J]. Journal of Image and Graphics, 2011, 16(12):2140-2144.[刘红毅, 韦志辉, 张峥嵘. 改进的核回归图像恢复[J]. 中国图象图形学报, 2011, 16(12):2140-2144.]
[15]
Liu H, Wei Z. Anedge-adaptive structure tensor kernel regression for image interpolation[C]//Proceedings of International Conference on Future Computer and Communication. Wuhan:IEEE, 2010, 2:681-685.
[16]
Chambolle A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical imaging and vision, 2004, 20(1-2):89-97.
[17]
Candes E, Romberg J. L1-magic: a collection of matlab routines for solving the convex optimization programs central to compressive sampling[CP/OL]. (2011-4-26)[2013-6-20]. http://users.ece.gatech.edu/justin/l1magic/.
[18]
Wu X, Dong W, Zhang X, et al. Model-assisted adaptive recovery of compressed sensing with imaging applications[J]. IEEE Transactions on Image Processing, 2012, 21(2):451-458.
[19]
Gan L, Do T, Tran T D. Fast compressive imaging using scrambled block Hadamard ensemble[EB/OL].[2013-07-08]. http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/scrambled_blk_WHT.pdf.