全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三角域上Said-Ball基的推广渐近迭代逼近

DOI: 10.11834/jig.20140213

Keywords: 渐近迭代逼近|广义严格对角占优|Said-Ball基|三角域

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的如果一组基函数是规范全正(NTP)的,并且对应的配置矩阵是非奇异的,那么由它所生成的参数曲线或张量积曲面具有渐近迭代逼近(PIA)性质。为了进一步推广渐近迭代逼近性质的适用范围,提出对于一组基函数,如果其对应的配置矩阵不是全正的,那么该基函数也可能具有渐近迭代逼近性质。方法提出的定理以基函数具有渐近迭代逼近性质时其对应的配置矩阵所需满足的条件作为理论基础,建立了配置矩阵为严格对角占优或者广义严格对角占优矩阵与基函数具有渐近迭代逼近性质之间的联系。结果配置矩阵为严格对角占优或者广义严格对角占优矩阵,则相应的三角曲面具有PIA性质或带权PIA性质,即广义PIA性质。数值实验验证了上述理论,并细致地分析了三角域上的低次Said-Ball基,指出了它们具有相应的广义PIA性质。结论本文将渐近迭代逼近的适用范围推广到三角域上的一般混合基函数。类似三角域上Said-Ball基,本文算法亦可用于研究三角域上的其他各类广义Ball基的PIA性质。

References

[1]  Ando T. Totally positive matrices[J]. Linear Algebra and Its Applications, 1987, 90: 165-229.[DOI: 10.1016/0024-3795(87)90313-2]
[2]  Qi D X, Tian Z X, Zhang Y X, et al. The method of numeric polish in curve fitting[J]. Acta Mathematica Sinica, 1975, 18(3): 173-184.[齐东旭, 田自贤, 张玉心, 等. 曲线拟合的数值磨光方法[J]. 数学学报, 1975, 18(3): 173-184. ]
[3]  de Boor C. How does Agee\'s smoothing method work?[EB/OL]. (1979)[2011-10-24].http:[C]//ftp.cs.wisc.edu/Approx/agee.pdf
[4]  Lin H W, Wang G J, Dong C S. Constructing iterative non-uniform B-spline curve and surface to fit data points[J]. Science in China Series F: Information Sciences, 2004, 47(3): 315-331.[DOI: 10.1360/02yf0529]
[5]  Lin H W, Bao H J, Wang G J. Totally positive bases and progressive iteration approximation[J]. Computer & Mathematics with Applications, 2005, 50(3-4): 575-586.[DOI: 10.1016/j.camwa.2005.01.023]
[6]  Delgado J, Pen~a J M. Progressive iterative approximation and bases with the fastest convergence rates[J]. Computer Aided Geometric Design, 2007, 24(1): 10-18.[DOI: 10.1016/j.cagd.2006.10.001]
[7]  Delgado J, Pen~a J M. A Comparison of different progressive iteration approximation methods[C]//Proceedings of the 7th international conference on Mathematical Methods for Curves and Surfaces. Berlin: Springer-Verlag, 2010:136-152.[DOI: 10.1007/978-3-642-11620-9_10]
[8]  Lin H W. Local progressive iterative approximation format for blending curves and patches[J]. Computer Aided Geometric Design, 2010, 27(4): 322-339.[DOI: 10.1016/j.cagd. 2010.01.003]
[9]  Lu L Z. Weighted progressive iteration approximation and convergence analysis[J]. Computer Aided Geometric Design, 2010, 27(2): 129-137.[DOI: 10.1016/j.cagd.2009.11.001]
[10]  Chen J, Wang G J. Progressive iterative approximation for triangular Bézier surfaces[J]. Computer-Aided Design, 2011, 43(8): 889-895.[DOI: 10.1016/j.cad.2011.03.012]
[11]  Chen J, Wang G J, Jin C J. Two kings of generalized progressive iterative approximations[J]. Acta Automatica Sinica, 2012, 38(1): 135-139.[陈杰, 王国瑾, 金聪健. 两类推广的渐近迭代逼近[J]. 自动化学报, 2012, 38(1):135-139.][DOI: 10.3724/SP.J.1004.2012.00135 ]
[12]  Goodman T N T, Said H B. Properties of generalized Ball curves and surfaces.[J]. Computer-Aided Design, 1991, 23(8): 554-560.[DOI: 10.1016/0010-4485(91)90056-3]
[13]  Hu S M, Wang G Z, Jin T G. Properties of two types of generalized Ball curves[J]. Computer-Aided Design, 1996, 28(2): 125-133.[DOI: 10.1016/0010-4485(95)00047-X]
[14]  Hu S M, Wang G J, Sun J G. A type of triangular Ball surface and its properties[J]. Journal of Computer Science and Technology, 1998, 13(1): 63-72.[DOI: 10.1007/BF02946615]
[15]  Dunkl C F, Xu Y. Orthogonal Polynomials of Several Variables[M]. Cambridge: Cambridge University Press, 2001:32-32.
[16]  Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133