全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂环境下高效物体跟踪级联分类器

DOI: 10.11834/jig.20140211

Keywords: 视觉追踪|Haar-like特征|级联分类器|TLD算法|积分直方图

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的传统跟踪算法在复杂环境下容易发生漂移(drift)现象,通过改进TLD(trackinglearningdetection)跟踪技术算法,提出了基于Sliding-window的局部搜索和全局搜索策略、积分直方图过滤器和随机Haar-like块特征过滤器。方法首先,采用积分直方图过滤器可以有效地过滤大量非目标子窗口块,从而减少后续过滤器特征匹配数;其次,利用随机Haar-like块特征过滤器能够解决跟踪算法在复杂环境(多物体、部分或较大区域遮挡、快速运动等)跟踪过程易发生漂移而导致跟踪精度的不足。结果结合TLD原始过滤器与新提出的两个过滤器组合而成的级联分类器,通过与主流的跟踪算法实验进行对比表明,级联分类器在稳定的背景或复杂环境的跟踪鲁棒性强、跟踪精度高,并且采用了局部和全局搜索策略提高了计算速度。结论提出的方法在诸多背景环境变化,跟踪物体形变等情况下,能够精确地多尺度跟踪待测目标;结合全局和局部搜索跟踪策略能够有效地克服级联分类器所带来的时间复杂度过高的问题,从而实现实时目标跟踪。

References

[1]  Kalal Z, Matas J, Mikolajczyk K. Online learning of robust object detectors during unstable tracking[C]//Proceedings of 12th International Conference on Computer vision workshops. New York: IEEE Xplore, 2009: 1417-1424.
[2]  Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[3]  Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
[4]  Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouvor, canada: citeseer, 1981:674-679.
[5]  Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of Computer Vision and Pattern Recognition, IEEE Computer Society Conference on. San Diego, CA: IEEE 2005, 1: 886-893.
[6]  Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition washington DC: IEEE, 2001, 1:511-518.
[7]  Porikli F. Integral histogram: a fast way to extract histograms in cartesian spaces[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE 2005, 1: 829-836.
[8]  Lowe D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra: IEEE, 1999, 2: 1150-1157.
[9]  Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up Robust Features. Computer Vision-ECCV 2006[M]. New York: Springer, 2006: 404-417.
[10]  更多...
[11]  Alahi A, Ortiz R, Vandergheynst P. Freak: Fast retina keypoint[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence RI: IEEE 2012: 510-517.
[12]  Ozuysal M, Fua P, Lepetit V. Fast keypoint recognition in ten lines of code[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis. MN: IEEE 2007: 1-8.
[13]  Kwon J, Lee K M. Visual tracking decomposition[C]//Procee-dings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco. CA: IEEE 2010: 1269-1276.
[14]  Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011:2564-2571.
[15]  Santner J, Leistner C, Saffari A, et al. Prost: parallel robust online simple tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) San Francisco, CA: IEEE 2010: 723-730.
[16]  Tomas Vojir. Tracking Dataset[EB/OL].2013-02[2013-06-06] http://cmp.felk.cvut.cz/vojirtom/dataset/index.html.
[17]  Kalal Z, Matas J, Mikolajczyk K. Pn learning:Bootstrapping binary classifiers by structural constraints[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.New York: IEEE Press, 2010: 49-56.
[18]  Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: Automatic detection of tracking failures[C]//Proceedings of 20th International Conference on Pattern Recognition. New York: IEEE Press, 2010: 2756-2759.
[19]  Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]//Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006:798-805.
[20]  Klein D A, Schulz D, Frintrop S, et al. Adaptive real-time video-tracking for arbitrary objects[C]//Proceedings of International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2010: 772-777.
[21]  Zhang K, Zhang L, Yang M H. Real-time Compressive Tracking. Computer Vision-ECCV 2012[M]. New York: Springer, 2012: 864-877.
[22]  Gu S, Zheng Y, Tomasi C. Efficient visual object tracking with online nearest neighbor classifier[M]. New York: Springer, 2011: 271-282.
[23]  Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting[J]. Proceedings of the British Machine Vision Conference. Edinburgh, UK: British Machine Vision Association 2006, 1(5): 4-7.
[24]  Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
[25]  Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011:263-270.
[26]  Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(4): 13.
[27]  Yang H, Shao L, Zheng F, et al. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74(18): 3823-3831.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133