全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

行为理解的认知推理方法

DOI: 10.11834/jig.20140201

Keywords: 行为理解|认知推理|特征行为关系|上下文感知

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的人类行为理解是机器智能研究中最富有挑战性的领域。其根本问题是语义获取,即从动作推理得到人的行为,需要跨越两者之间的语义鸿沟,为此提出一种人关于日常行为知识与人体动作行为、环境信息之间的建模方法,以及可扩展的开放式结构环境―行为关系模型,基于该模型提出一种新的行为理解的渐进式认知推理方法。方法首先根据知识,建立多种特征、复合特征和行为之间的关系模型。系统根据当前的输入流,处理得到当前的特征与复合特征集,推理得到当前的可能行为集。该行为集指导处理模块,更新特征集,得到新的行为集。结果应用本文渐进式连续推理方法,系统可以把人关于日常行为的知识与人体运动、环境变化等传感器数据处理获取到的信息动态绑定,实现知识辅助的行为理解。结论提出的推理方法能连续处理长时间、同时发生的行为。

References

[1]  Lim G H, Chung B, Suh I H. Recognition and incremental learning of scenario-oriented human behavior patterns by two threshold models[C]//Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction. New York: ACM, 2011:189-190.
[2]  Patterson D J, Fox D, Kautz H, et al. Fine-grained activity recognition by aggregating abstract object usage[C]//IEEE International Symposium on Wearable Computers. Lreland: IEEE, 2005:44-51.
[3]  Ward J A, Lukowicz, Troter P, et al. Activity recognition of assembly tasks using body-worn microphones and accelerometers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10):1553-1567.
[4]  Boger J, Poupart P, Hoey J, et al. A decision-theoretic approach to task assistance for persons with dementia[C]//Proceedings of the International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005:1293-1299.
[5]  Clarkson B, Pentland A. Unsupervised clustering of ambulatory audio and video[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix, AZ: IEEE, 1999, 6:3037-3040.
[6]  Duong T V, Bui H H, Phung D Q, et al. Activity recognition and abnormality detection with the switching hidden semi-markov model[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005, 1: 838-845.
[7]  Minnen D, Starner D, Ward J A, et al. Recognizing and discovering human actions from on-body sensor data[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Amsterdam:IEEE, 2005: 1545-1548.
[8]  Liu C D, Chung Y N, Chung P C. An interaction-embedded HMM framework for human behavior understanding: with nursing environments as examples[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5):1236-1246.
[9]  Singla G, Cook D, Schmitter-Edgecombe M. Recognizing independent and joint activities among multiple residents in smart environments[J]. Ambient Intelligence and Humanized Computing Journal, 2010, 1(1):57-63.
[10]  Bui H H, Venkatesh S, West G. Tracking and surveillance in wide-area spatial environments using the abstract hidden markov model[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2001, 15(1):177-196.
[11]  van Kasteren T, Krose B. Bayesian activity recognition in residence for elders[C]//Proceedings of the 3rd IET International Conference on Intelligent Environments. Ulm, Germany: Institute of Engineering Technology, 2007:209-212.
[12]  Wang S, Pentney W, Popescu A M, et al. Common sense based joint training of human activity recognizers[C]//Proceedings of International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007, 7:2237-2242.
[13]  Tapia E M, Intille S S, Larson K. Activity recognition in the home using simple and ubiquitous sensors[C]//Proceedings of the Second International Conference on Pervasive Computing. Vienna, Austria:Springer, 2004, 3001:158-175.
[14]  Logan B, Healey J, Philipose M, et al. A long-term evaluation of sensing modalities for activity recognition[C]//Proceedings of Ubicomp 2007: Ubiquitous Computing. Innsbruck, Austria:Springer, 2007, 4717:483-500.
[15]  Bao L, Intille S S. Activity recognition from user-annotated acceleration data[C]//Proceedings of the second International Conference on Pervasive Computing. Vienna, Austria:Springer, 2004, 3001:1-17.
[16]  van Kasteren T, Noulas A, Englebienne G, et al. Accurate activity recognition in a home setting[C]//Proceedings of UbiComp\'08. New York, USA:ACM, 2008:1-9.
[17]  Liao L, Fox D, Kautz H. Extracting places and activities from gps traces using hierarchical conditional random fields[J]. International Journal on Robotics Research, 2007, 26(1):119-134.
[18]  Kautz H A, Allen J, Pelavin R, et al.A formal theory of plan recognition and its implementation[M][C]// Reasoning About Plans. San Mateo, CA: Morgan Kaufmann, 1991: 69-125.
[19]  Wobke W. Two logical theories of plan recognition[J]. Journal of Logic Computation, 2002, 12(3): 371-412.
[20]  Bouchard B, Giroux S. A smart home agent for plan recognition of cognitivelyimpaired patients[J]. Journal of Computers, 2006, 1(5): 53-62.
[21]  更多...
[22]  Chen L, Nugent C, Mulvenna M, et al. A logical framework for behaviour reasoning and assistance in a smart home[J]. International Journal of Assistive Robotics and Mechatronics, 2008, 9(4):20-34.
[23]  Thomson G, Terzis S, Nixon P. Situation determination with reusable situation specifications[C]//Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops.Pisa:IEEE, 2006:620-623.
[24]  Xu G, Tao L, Zhang D, et al. Dual relations in physical and cyberspace[J]. Chinese Science Bulletin, 2006, 51(1):121-128.
[25]  Gondek D C, Lally A, Kalyanpur A, et al. A framework for merging and ranking of answers in DeepQA[J].IBM Journal of Research and Development, 2012, 56(3/4):14(1-12).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133