全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多方向显著性权值学习的行人再识别

DOI: 10.11834/jig.20151212

Keywords: 行人再识别,度量学习,显著性特征,排序

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对当前行人再识别匹配块的显著性外观特征不一致的问题,提出一种对视角和背景变化具有较强鲁棒性的基于多向显著性相似度融合学习的行人再识别算法。方法首先用流形排序估计目标的内在显著性,并融合类间显著性得到图像块的显著性;然后根据匹配块的4种显著性分布情况,通过多向显著性加权融合建立二者的视觉相似度,同时采用基于结构支持向量机排序的度量学习方法获得各方向显著性权重值,形成图像对之间全面的相似度度量。结果在两个公共数据库进行再识别实验,本文算法较同类方法能获取更为全面的相似度度量,具有较高的行人再识别率,且不受背景变化的影响。对VIPeR数据库测试集大小为316对行人图像的再识别结果进行了定量统计,本文算法的第1识别率(排名第1的搜索结果即为待查询人的比率)为30%,第15识别率(排名前15的搜索结果中包含待查询人的比率)为72%,具有实际应用价值。结论多方向显著性加权融合能对图像对的显著性分布进行较为全面的描述,进而得到较为全面的相似度度量。本文算法能够实现大场景非重叠多摄像机下的行人再识别,具有较高的识别力和识别精度,且对背景变化具有较强的鲁棒性。

References

[1]  Doretto G, Sebastian T, Tu P, et al. Appearance-based person reidentification in camera networks:problem overview and current approaches[J]. Journal of Ambient Intelligence and Humanized Computing, 2011, 2(2):127-151.[DOI:10.1007/s12652-010-0034-y]
[2]  Vezzani R, Baltieri D, Cucchiara R. People reidentification in surveillance and forensics:a survey[J]. ACM Computing Surveys, 2013, 46(2):#29.[DOI:10.1145/2543581.2543596]
[3]  Ma B P, Jurie F, Su Y. Covariance descriptor based on bio-inspired features for person re-Identification and face verification[J]. Image & Vision Computing, 2014, 32(6):379-390.[DOI:10.1016/j.imavis.2014.04. 002]
[4]  Gong S, Cristani M, Yan S, et al. Person Re-Identification[M]. Belin:Springer, 2014:1-20.[DOI:10.1007/978-1-4471-6296-4]
[5]  Ma B, Su Y, Jurie F. Bicov:a novel image representation for person re-identification and face verification[C]//Proceedings of the British Machive Vision Conference. Guildford, UK:BMVA Press, 2012:1-11.[DOI:10.5244/C.26.57]
[6]  Farenzena M, Bazzani L, Perina A, et al. Person re-identification by symmetry-driven accumulation of local features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco:IEEE Press, 2010:2360-2367.[DOI:10.1109/CVPR.2010.5539926]
[7]  Prosser B, Zheng W S, Gong S, et al. Person re-identification by support vector ranking[C]//Proceedings of the British Machine Vision Conference. Aberystwyth, UK:BMVA Press, 2010, 2(5):1-11.[DOI:10.5244/C.24.21]
[8]  Zheng W S, Gong S, Xiang T. Person re-identification by probabilistic relative distance comparison[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence:IEEE Press, 2011:649-656.[DOI:10.1109/CVPR. 2011.5995598]
[9]  Layne R, Hospedales T M, Gong S. Person re-identification by attributes[C]//Proceedings of the British Machine Vision Conference. Surrey, UK:BMVA Press, 2012, 2(3):1-9.[DOI:10.5244/C.26.24]
[10]  Zhao R, Ouyang W, Wang X. Unsupervised salience learning for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland:IEEE Press, 2013:3586-3593.[DOI:10.1109/CVPR.2013.460]
[11]  Yang C, Zhang L, Lu H, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland:IEEE Press, 2013:3166-3173.[DOI:10.1109/CVPR. 2013.407]
[12]  Joachims T, Finley T, Yu C N J. Cutting-plane training of structural SVMs[J]. Machine Learning, 2009, 77(1):27-59.[DOI:10.1007/s10994-009-5108-8]
[13]  McFee B, Lanckriet G R. Metric learning to rank[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel:ACM, 2010:775-782.
[14]  Gray D, Brennan S, Tao H. Evaluating appearance models for recognition, reacquisition, and tracking[C]//Proceedings of the 10th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Rio de Janeiro:IEEE, 2007, 3(5):1-7.
[15]  Gray D, Tao H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[M]//Proceedings of 10th European Conference on Computer Vision. Berlin Heidelberg:Springer, 2008:262-275.[DOI:10.1007/978-3-540-88682-2_21]
[16]  Zheng W S, Gong S, Xiang T, Re-identification by relative distance comparison[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3):653-668.[DOI:10.1109/TPAMI.2012.138]
[17]  Kviatkovsky I, Adam A, Rivlin E. Color invariants for person reidentification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7):1622-1634.[DOI:10.1109/TPAMI.2012.246.]
[18]  Kostinger M, Hirzer M, Wohlhart P, et al. Large scale metric learning from equivalence constraints[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence:IEEE Press, 2012:2288-2295.[DOI:10.1109/CVPR.2012.6247939]
[19]  Hirzer M, Roth P M, K?stinger M, et al. Relaxed pairwise learned metric for person re-identification[M]//Proceedings of 12th European Conference on Computer Vision. Berlin Heidelberg:Springer, 2012:780-793.[DOI:10.1007/978-3-642-33783-3_56]
[20]  Ess A, Leibe B, Van Gool L. Depth and appearance for mobile scene analysis[C]//Proceedings of IEEE 11th International Conference on Computer Vision. Rio de Janeiro:IEEE Press, 2007:1-8.[DOI:10.1109/ICCV. 2007.4409092]
[21]  更多...
[22]  Schwartz W R, Davis L S. Learning discriminative appearance-based models using partial least squares[C]//2009 XXⅡ Brazilian Symposium on Computer Graphics and Image Processing. Rio de Janiero:IEEE Press, 2009:322-329.[DOI:10.1109/SIBGRAPI. 2009.42]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133