全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

子块鉴别分析的路面裂缝检测

DOI: 10.11834/jig.20151210

Keywords: 裂缝检测,鉴别分析,灰度校正,稀疏自编码

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的路面图像受光照、行道线和油渍等干扰使得准确的提取并统计路面裂缝信息难以实现。鉴于此,提出一种基于子块鉴别分析的路面裂缝检测算法。方法首先提出一种基于亮度补偿的灰度校正算法用以削弱光照等影响并结合稀疏自编码模型提取子块特征;然后在鉴别分析基础上提出两类迭代鉴别分析降维算法,通过循环更新子类类间距离,使得裂缝子块投影和聚类交替执行直至满足收敛条件从而获得更具有鉴别能力的低维子空间;最后对投影后的子块采用最近邻分类器进行快速分类。结果迭代过程中裂缝子块聚类结果逐渐趋向于低维子空间下的真实样本分布形态、子空间鉴别能力大幅提升。公开数据集上该算法取得95.5%的识别率,在实际采集的高速公路数据库上也取得90.9%的识别率,验证了本文算法的有效性。结论提出了一种高效的基于鉴别分析的子块特征识别算法用于路面裂缝检测,在深度挖掘裂缝子块特征的基础上,迭代寻找最优低维鉴别子空间实现特征降维,在包含多种噪声的路面环境中具有良好的鲁棒性和适应性。多组对比实验结果表明其有效性优于其他裂缝子块特征识别方法。

References

[1]  Cheng H D, Miyojim M. Automatic pavement distress detection system[J]. Journal of Information Science, 1998, 108(1-4):219-240.
[2]  Yan M D, Bo S B, He Y Y. A method of image detection and analysis for pavement crack based on morphology[J]. Journal of Engineering Graphics, 2008, 29(2):142-147.[闫茂德,伯绍波,贺昱曜.一种形态学的路面裂缝图像检测与分析方法[J].工程图学学报,2008,29(2):142-147.]
[3]  Li Q Q, Liu X L. Novel approach to pavement image segmentation based on neighboring difference histogram method[C]//Proceeding of International Conference on Image and Signal Processing. Sanya, China:IEEE, 2008:792-796.
[4]  Ma C X, Zhao C X, Di F, et al. Road crack detection under natural environment[J]. Journal of Engineering Graphics, 2011, 32(4):20-26.[马常霞,赵春霞,狄峰,等.自然环境下路面裂缝识别[J].工程图学学报,2011,32(4):20-26.]
[5]  Xu W, Tang Z M, Xu D, et al. Integrating multi-features fusion and gestalt principles for pavement crack detection[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(1):147-156.[徐威,唐振民,徐丹,等.融合多特征与格式塔理论的路面裂缝检测[J].计算机辅助设计与图形学学报,2015,27(1):147-156.]
[6]  Fereidoon M N, Hamzeh Z. An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification[J]. Expert Systems with Applications, 2011, 38(8):9442-9460.
[7]  Ma C X, Zhao C X, Hu Y, et al. Road crack detection based on NSCT and morphology[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(12):1761-1767.[马常霞,赵春霞,胡勇,等.结合NSCT和图像形态学的路面裂缝检测[J].计算机辅助设计与图形学学报,2009,21(12):1761-1767.]
[8]  Fujita Y, Hamamoto Y. A robust automatic crack detection method from noisy concrete surfaces[J]. Machine Vision and Applications, 2011, 22(2):245-254.
[9]  Xu W, Tang Z M, Zhou J, et al. Pavement crack detection based on saliency and statistical features[C]//Proceeding of International Conference on Image Processing. Melbourne:IEEE, 2013:4093-4097.
[10]  Xu W, Tang Z M, Lv J Y. Pavement crack detection based on image saliency[J]. Journal of Image and Graphics, 2013, 18(1):69-77.[徐威,唐振民,吕建勇.基于图像显著性的路面裂缝检测[J].中国图像图形学报,2013,18(1):69-77.] [DOI:10.11834/jig.20130109.]
[11]  Li Q Q, Zou Q, Zhang D Q, et al. FoSA:F* seed-growing approach for crack-line detection from pavement images[J]. Image and Vision Computing, 2011, 29(12):861-872.
[12]  Zou Q, Cao Y, Li Q Q, et al. CrackTree:automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2011, 33(3):227-238.
[13]  Chu X M, Wang R B. Asphalt pavement surface distress image recognition based on neural network[J]. Journal of Wuhan University of Technology, 2004, 28(3):69-77.[初秀明,王荣本.基于神经网络的沥青路面破损图像识别研究[J].武汉理工大学学报,2004,28(3):69-77.]
[14]  Gavilan M, Balcones D, Marcos O, et al. Adaptive road crack detection system by pavement classification[J]. Sensors, 2011, 11(10):9628-9657.
[15]  Oliveira H, Correia P L. Automatic road crack detection and characterization[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1):155-168.
[16]  Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[17]  Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of International Conference on Machine Learning. New York, USA:ACM Press, 2008:1096-1103.
[18]  Fisher R A. The use of multiple measurements in taxonomic problem[J]. Journal of Annals Eugenics,1936,7(2):179-188.
[19]  Hastie T, Tibshirani R. Discriminant analysis by Gaussian mixtures[J]. Journal of the Royal Statistical Society,1996,58(1):155-176.
[20]  Zhu M, Martinez A. Subclass discriminant analysis[J]. Journal of IEEE Transactions on Pattern Analysis and Machine Learning,2006,28(8):1274-1286.
[21]  更多...
[22]  Tao Y T, Yang J, Chang H Y. Enhanced iterative projection for subclass discriminant analysis under EM-alike framework[J]. Pattern Recognition,2014,47(3):1113-1125.
[23]  Oliveira H, Correia P L. CrackIT-an image processing toolbox for crack detection and characterization[C]//Proceeding of International Conference on Image Processing. Paris, France:IEEE, 2014:798-802.
[24]  Quoc V L, Jiquan N, Adam C, et al. On optimization methods for deep learning[C]//Proceeding of International Conference on Machine Learning. Bellevue, USA:ACM, 2011:265-272.
[25]  Boyd S, Vandenberghe L. Convex Optimization[M]. New York:Cambridge University Press, 2004:678-680.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133