全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

字典学习和稀疏表示的海马子区图像分割

DOI: 10.11834/jig.20151204

Keywords: 海马子区分割,稀疏表示,字典学习,多图谱,局部二值模式,图像块

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的海马子区体积极小且结构复杂,现有多图谱的分割方法难以取得理想的分割结果,为此提出一种字典学习和稀疏表示的海马子区分割方法。方法该方法为目标图像中的每个体素点建立稀疏表示和字典学习模型以获取该点的标记。其中,字典学习模型由图谱灰度图像中的图像块构建。提出利用图谱标记图像的局部二值模式(LBP)特征增强训练字典的判别性;然后求解目标图像块在训练字典中的稀疏表示以确定该点标记;最后依据图谱的先验知识纠正分割结果中的错误标记。结果与现有典型的多图谱方法进行定性和定量对比,该方法优于现有典型的多图谱分割方法,对较大海马子区的平均分割准确率可达到0.890。结论本文方法适用于在大脑核磁共振图像中精确分割海马子区,且具有较强的鲁棒性,可为神经退行性疾病的诊断提供可靠的依据。

References

[1]  Lim H K, Hong S C, Jung W S, et al. Automated hippocampal subfields segmentation in late life depression[J]. Journal of Affective Disorders, 2012, 143(1-3):253-256.[DOI:10.1016/S0924-977X(12)70453-4]
[2]  Voets N L, Bernhardt B C, Kim H, et al. Increased temporolimbic cortical folding complexity in temporal lobe epilepsy[J]. Neurology, 2010, 76(2):138-144.[DOI:10.1212/wnl.0b013e318205d521]
[3]  Kim H, Mansi T, Bernasconi N, et al. Surface-based multi-template automated hippocampal segmentation:application to temporal lobe epilepsy[J]. Medical Image Analysis, 2012, 16(7):1445-1455.[DOI:10.1016/j.media.2012.04. 008]
[4]  Heckemann R A, Hajnal J V, Aljabar P, et al. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion[J]. Neuroimage, 2006, 33(1):115-126.[DOI:10.1016/j.neuroimage.2006.05.061]
[5]  Yushkevich P A, Wang H, Pluta J, et al. Nearly automatic segmentation of hippocampal subfields in vivo focal T2-weighted MRI[J]. Neuroimage, 2010, 53(4):1208-1224.[DOI:10.1016/j.neuroimage.2010.06.040]
[6]  Wang H, Suh J W, Das S R, et al. Multi-atlas segmentation with joint label fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3):611-623.[DOI:10.3389/fninf.2013.00027]
[7]  Coupé P, Manjón J V, Fonov V, et al. Patch-based segmentation using expert priors:application to hippocampus and ventricle segmentation[J]. Neuroimage, 2011, 54(2):940-954.[DOI:10.1016/j.neuroimage.2010.09.018]
[8]  Tong T, Wolz R, Coupé P, et al. Segmentation of MR images via discriminative dictionary learning and sparse coding:application to hippocampus labeling[J]. Neuroimage, 2013, 76(1):11-23.[DOI:10.1016/j.neuro-image.2013.02.069]
[9]  Wu G, Kim M, Sanroma G, et al. Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition[J]. Neuroimage, 2015, 106(1):34-46.[DOI:10.1016/j.ne-uroimage.2014.11.025]
[10]  Liu Z, Song X N, Tang Z M. Sparse representation based face recognition classification algorithm using greedy search strategy[J]. Journal of Image and Graphics, 2015, 20(1):39-49.[刘梓,宋晓宁,唐振民.稀疏表示和贪婪搜索的人脸分类[J].中国图象图形学报,2015,20(1):39-49.] [DOI:10.11834/jig.20150105]
[11]  Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12):3736-3745.[DOI:10.1109/icig.2009.101]
[12]  Zhang Q, Li B. Discriminative K-SVD for dictionary learning in face recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010, 2691-2698.[DOI:10.1109/CVPR. 2010. 5539989]
[13]  Jiang Z, Lin Z, Davis LS. Label consistent K-SVD:Learning a discriminative dictionary for recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2651-2664.[DOI:10.1109/tpami.2013.88]
[14]  Li W, Chen C, Su H, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3681-3693.[DOI:10.1109/tgrs.2014.2381602]
[15]  Zhao G, Pietik?inen. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):915-928.[DOI:10.1109/tpami.2007.1110]
[16]  Nyúl L G, Udupa J K. On standarding the MR image intensity scales[J]. Magnetic Resonance in Medicine, 1999, 42(6):1072-1081.[DOI:10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m]
[17]  Wu G, Wang Q, Zhang D, et al. A generative probability model of joint label fusion for multi-atlas based brain segmentation[J]. Medical Image Analysis, 2014, 18(6):881-890.[DOI:10.1016/j.media.2013.10.013]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133