全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于最大相关熵准则的2维主成分分析

DOI: 10.11834/jig.20151213

Keywords: 最大相关熵准则,主成分分析,鲁棒性,信息论,外点

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的本文针对基于最小均方差准则的主成分分析算法(如2DPCA-L2(two-dimensionalPCAwithL2-norm)算法和2DPCA-L1(two-dimensionalPCAwithL1-norm)算法)对外点敏感、识别率低的问题,结合信息论中的最大相关熵准则,提出了一种基于最大相关熵准则的2DPCA(2DPCA-MCC)。方法2DPCA-MCC算法采用最大相关熵表示目标函数,通过半二次优化技术解决相关熵问题,降低了外点在目标函数评价中的贡献,从而提高了算法的鲁棒性和识别精度。结果通过对比2DPCA-MCC算法和2DPCA-L2、2DPCA-L1在ORL人脸数据库上的识别效果,表明了2DPCA-MCC算法的识别率比2维主成分分析算法的识别率最低提高了近10%,最高提高了近30%。结论提出了一种基于最大相关熵的2DPCA算法,通过半二次优化技术解决非线性优化问题,实验结果表明,本算法能够较好地解决外点问题,显著提高识别精度,适用于解决人脸识别中的外点问题。

References

[1]  Jolliffe I T. Principal Component Analysis[M]. Wiley Online Library:Springer, 2002.[DOI:10.1002/9781118445112. stat06472]
[2]  Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1):37-52.[DOI:10.1016/0169-7439(87)80084-9]
[3]  Ding C H Q, Zhou D, He X F, et al. R 1-PCA:rotational invariant L1-norm principal component analysis for robust subspace factorization[C]//Proceedings of the 23rd International Conference on Machine Learning. Carnegie Mellon University, Pittsburgh, USA:ACM, 2006:281-288.[DOI:10.1145/1143844.1143880]
[4]  Baccini A, Besse P, De Falguerolles A D. A L1-norm PCA and a heuristic approach[J]. Ordinal and Symbolic Data Analysis, Springer, 1996:359-368.
[5]  Kwak N. Principal component analysis based on L1-norm maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9):1672-1680.[DOI:10.1109/TPAMI.2008.114]
[6]  Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1):131-137.[DOI:10.1109/TPAMI.2004.1261097]
[7]  Li X L, Pang Y W, Yuan Y. L1-norm-based 2DPCA[J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 2010, 40(4):1170-1175.[DOI:10.1109/TSMCB. 2009. 2035629]
[8]  Wang H X. Block principal component analysis with L1-norm for image analysis[J]. Pattern Recognition Letters, 2012, 33(5):537-542.[DOI:10.1016/j.patrec.2011.11.029]
[9]  Pang Y W, Li X L, Yuan Y. Robust tensor analysis with L1-Norm[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(2):172-178.[DOI:10.1109/TCSVT.2009.2020337]
[10]  Principe J C, Xu D, Fisher J. Information theoretic learning[C]//Proceedings of Unsupervised Adaptive Filtering, Haykin S, ed. New York:Wiley, 2000, 1:265-319.
[11]  Xu D. Energy, entropy and information potential for neural computation[D]. Gainesville, USA:University of Florida, 1999.
[12]  Viola P, Schraudolph N, Sejnowski T J. Empirical entropy manipulation for real-world problems[J]. Advances in Neural Information Processing Systems, 1996:851-857.
[13]  Liu W F, Pokharel P P, Principe J C. Correntropy:properties and applications in non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11):5286-5298.[DOI:10.1109/TSP.2007.896065]
[14]  Yuan X T and Hu B G. Robust feature extraction via information theoretic learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada:ACM, 2009:1193-1200.
[15]  Rockafellar R T. Convex Analysis[M]. Princeton Mathematical Series:Princeton University Press, 1970:46-49.
[16]  He R, Hu B G., Zheng W S, et al. Two-stage sparse representation for robust recognition on large-scale database[C]//Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. Westin Peachtree Plaza, Atlanta, Georgia, USA:AAAI Press, 2010.
[17]  He R, Zheng W S, Hu B G.. Maximum correntropy criterion for robust face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(8):1561-1576.[DOI:10.1109/TPAMI.2010.220]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133