全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

色彩熵在图像质量评价中的应用

DOI: 10.11834/jig.20151203

Keywords: 图像质量评价,色彩空间,信息熵,色彩熵

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的由于色彩空间包含了图像的大量信息,而且Lab色彩空间更接近于人眼视觉,因此提出一种改进的无参考图像质量评价算法IQALE(imagequalityassessmentusingLabcolorspaceandentropy),通过在SSEQ(spatial-spectralentropy-basedquality)算法中加入Lab色彩空间a通道和b通道的特征来提高算法精度。方法信息熵是近几年研究较多的图像特征,并且能较好地运用在图像质量评价研究中。该文在色彩空间和灰度空间同时提取信息熵特征,通过支持向量机(SVM)对图像特征和MOS值进行训练和测试。结果在LIVE、TID2008、MICT、CSIQ和IVC这5个常用数据库上的实验结果表明:在算法中加入Lab色彩空间信息可以提高算法精度,并且本文算法IQALE的效果优于目前流行的无参考图像质量评价算法。为了验证算法的可扩展性,该文还在这5个数据库上进行了数据库独立性实验。结论从实验结果来看,本文提出的IQALE算法通过加入色彩熵特征使得算法具有较高且较稳定的精度,数据库独立性实验也体现了算法较好的鲁棒性,对于各种失真类型都具有较好的普适性。

References

[1]  Wang Z, Bovik A C. Modern Image Quality Assessment[M]. California, USA:Morgan&Claypool, 2006.
[2]  Wang Z, Bovik A. Sheikh H. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.[DOI:10.1109/TIP.2003.819861]
[3]  Li L, Lin W, Zhu H. Learning structural regularity for evaluating blocking artifacts in JPEG images[J]. Signal Processing Letters IEEE, 2014, 21(8):918-922.[DOI:10.1109/LSP.2014. 2320743]
[4]  Sang Q, Qi H, Wu X, et al. No-reference image blur index based on singular value curve[J]. Journal of Visual Communication & Image Representation, 2014, 25(7):1625-1630.[DOI:10.1016/j.jvcir.2014.08.002]
[5]  Zhu T, Karam L. A no-reference objective image quality metric based on perceptually weighted local noise[J]. Eurasip Journal on Image & Video Processing, 2014, 2014(2):127-128.[DOI:10.1186/1687-5281-2014-5]
[6]  Tang H, Joshi N, Kapoor A. Learning a blind measure of perceptual image quality[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA:IEEE, 2011:305-312.[DOI:10.1109/CVPR. 2011.5995446]
[7]  Li Y, Po L M, Xu X, et al. No-reference image quality assessment with shearlet transform and deep neural networks[J]. Neurocomputing, 2015, 154:94-109.[DOI:10.1016/j.neucom.2014.12. 015]
[8]  Zhang Y, Wang C, Mou X. SPCA:a no-reference image quality assessment based on the statistic property of the PCA on nature images[J]. Proc Spie, 2013, 8660(1):311-316.[DOI:10.1117/12. 2008599]
[9]  Jin B, Li C F, Wu X J. No-reference image quality assessment based on natural scene statistics and wavelet[J]. Journal of Image and Graphics, 2012, 17(1):33-39.[金波,李朝锋,吴小俊.结合NSS和小波变换的无参考图像质量评价[J].中国图象图形学报, 2012, 17(1):33-39.]
[10]  Jia H Z, Sun Q S, Wang T H. Blind image quality assessment based on perceptual features and natural scene statistics[J]. Journal of Image and Graphics, 2014, 19(6):859-867.[贾惠珍,孙权森,王同罕.结合感知特征和自然场景统计的无参考图像质量评价[J].中国图象图形学报, 2014, 19(6):859-867.] [DOI:10.11834/jig.20140606]
[11]  Liu L, Dong H, Huang H, et al. No-reference image quality assessment in curvelet domain[J]. Signal Processing Image Communication, 2014, 29(4):494-505.[DOI:10.1016/j.image.2014.02. 004]
[12]  Mittal A, Moorthy A K, Bovik A C. No-Reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12):4695-4708.[DOI:10.1109/TIP.2012.2214050]
[13]  Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3):209-212.[DOI:10.1109/LSP. 2012. 2227726]
[14]  Uchida S, Yih T D. Evaluation of radiographic images by entropy:application to development process[J]. Japanese Journal of Applied Physics, 1978, 17(11):2029-2034.[DOI:10.1143/JJAP. 17.2029]
[15]  Sheikh H R, Ac B. Image information and visual quality[J]. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society, 2006, 15(2):430-444.[DOI:DOI:10.1109/TIP.2005.859378]
[16]  Hu Q, Xie Z X, Wang Z F, et al. Constructing NR-IQA function based on product of information entropy and contrast[C]//International Symposium on Information Science and Engineering. Shanghai, China:IEEE, 2008:548-550.[DOI:10.1109/ISISE.2008.93]
[17]  Liu L, Liu B, Huang H, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing Image Communication, 2014, 29(8):856-863.[DOI:10. 1016/j.image.2014.06.006]
[18]  Schwarz M W, Cowan W B, Beatty J C. An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models[J]. ACM Transactions on Graphics, 1987, 6(2):123-158.[DOI:10.1145/31336.31338]
[19]  Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEE Trans. on Image Process, 2011, 20(12):3350-3364.[DOI:10.1109/TIP. 2011.2147325]
[20]  Ye P, Kumar J, Kang L, et al. Unsupervised feature learning framework for no-reference image quality assessment[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2012, 157(10):1098-1105.[DOI:10.1109/CVPR. 2012. 6247789]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133