全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高分辨率SAR影像形态学层级分析的建筑物检测

DOI: 10.11834/jig.20151111

Keywords: 建筑物检测,层级分析,形态学属性滤波,影像去噪,高分辨率SAR

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的现有基于结构分析的高分辨率SAR影像建筑物检测方法,只考虑了直线和L形结构建筑物,并且依赖建筑物高亮线条处阴影区作为建筑物识别的主要特征;当处于复杂场景时,阴影区受制于背景较暗或建筑物密集而无法准确得到,导致建筑物检测误差大、检测率低。针对上述问题,提出一种基于形态学层级分析的高分辨率SAR影像无监督建筑物检测算法。方法该方法基于单幅单极化高分辨率SAR影像,首先利用改进的形态学交替滤波算子有效抑制其固有的斑点噪声,大大剔除了同质区背景噪声的干扰;然后利用层级分析形态学差分属性断面算法来实现对SAR影像建筑物的几何结构特征的提取;最后结合特征融合和属性阈值分割等后处理步骤得到复杂场景下建筑物提取信息。结果将上述方法在建筑物密集的城区SAR影像中实验,通过与其他方法对比分析,具有检测率高、误差小的特点,准确率和召回率分别为95.38%、86.31%,并对降低虚警率方面有明显的优势。结论将形态学交替滤波与形态学属性滤波的改进与结合,在对不同走向、尺寸和形状的高密度建筑物检测中具有较好的适应性。

References

[1]  Ferro A, Brunner D, Bruzzone L. Automatic detection and reconstruction of building radar footprints from single VHR SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(2):935-952.[DOI:10.1109/TGRS.2012.2205156]
[2]  Fu X Y, You H J, Fu K. Building segmentation from High-Resolution SAR images based on improved Markov random field[J]. Acta Electronica Sinica, 2012, 40(6):1141-1147.[傅兴玉, 尤红建, 付琨. 基于改进Markov随机场的高分辨率SAR图像建筑物分割算法[J]. 电子学报, 2012, 40(6):1141-1147.][DOI:10.3969/j.issn.0372-2112.2012.06.012]
[3]  Su J, Zhang Q, Chen W, et. al. A building detection algorithm based on feature fusion in high resolution SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(9):939-944.[苏娟,张强,陈炜,等. 高分辨率SAR图像中建筑物特征融合检测算法[J]. 测绘学报, 2014, (9):939-944.][DOI:10.13485/j.cnki.11-2089.2014.0162]
[4]  Benediktsson J A, Bruzzone L, Chanussot J, et al. Hierarchical analysis of remote sensing data:morphological attribute profiles and binary partition trees[M].Mathematical Morphology and Its Applications to Image and Signal Processing. Berlin Heidelberg:Springer, 2011:306-319.[DOI:10.1007/978-3-642-21569-8_27]
[5]  Dalla Mura M, Atli Benediktsson J, Waske B, et al. Extended profiles with morphological attribute filters for the analysis of hyperspectral data[J]. International Journal of Remote Sensing, 2010, 31(22):5975-5991.[DOI:10.1080/01431161. 2010. 512425]
[6]  Dalla Mura M, Benediktsson J A, Waske B, et al. Morphological attribute profiles for the analysis of very high resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10):3747-3762.[DOI:10.1109/TGRS.2010. 2048116]
[7]  Zheng Y H, Cheng J, Cao Z J. SAR image denoising via improved non-local means filte[J]. Journal of Image and Graphics, 2012,17(7):886-891.[郑永恒, 程建, 曹宗杰. 改进非局部均值滤波的SAR图像降噪[J]. 中国图象图形学报, 2012, 17(7):886-891.][DOI:10.11834/jig.20120720]
[8]  Boldt M, Thiele A, Schulz K, et al. SAR image segmentation using morphological attribute profiles[C]//Proceedings of The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Zurich, Swizerland:Copernicus GmbH. 2014:39-44.[DOI:10.5194/isprsarchives-XL-3-39-2014]
[9]  Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing Active and Passive-Volume II:Radar Remote Sensing and Surface Scattering and Enission Theory[M]. New Jersey, USA:Addison-Wesley Publishing Company, 1982:1064.
[10]  Pei S C, Lai C L, Shih F Y. An efficient class of alternating sequential filters in morphology[J]. Graphical Models and Image Processing, 1997, 59(2):109-116.[DOI:10.1006/gmip. 1996.0416]
[11]  Bai X, Zhou F. New alternating sequential filters and the application for impulsive noise removal[C]//Proceedings of the 3rd International Congress on Image and Signal Processing. Yantai, China:IEEE, 2010, 3:1088-1091.[DOI:10.1109/CISP.2010.5646889]
[12]  Huang X, Zhang L, Wang L. Evaluation of morphological texture features for mangrove forest mapping and species discrimination using multispectral IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):393-397.[DOI:10.1109/LGRS.2009.2014398]
[13]  Pesaresi M, Benediktsson J A. A new approach for the morphological segmentation of high-resolution satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2):309-320.[DOI:10.1109/36.905239]
[14]  Benediktsson J A, Pesaresi M, Amason K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9):1940-1949.[DOI:10.1109/TGRS.2003.814625]
[15]  Zhang X M, Yi Z X, Tian S, et al. Change detection of SAR images using morphologic attribute profile and support vector machine[J]. Optics and Precision Engineering, 2014,22(10):2832-2839.[张雄美, 易昭湘, 田淞, 等. 结合形态学属性断面与支持向量机的合成孔径雷达图像变化检测[J].光学精密工程, 2014,22(10):2832-2839.][DOI:10.3788/OPE.20142210.2832]
[16]  Zhao L J, Qin Y L, Gao G, et al. Detection of built-up areas from high-resolution SAR images using the GLCM textural analysis[J]. Journal of Remote Sensin, 2009,13(3):475-490.[赵凌君, 秦玉亮, 高贵,等. 利用GLCM纹理分析的高分辨率SAR图像建筑区检测[J]. 遥感学报, 2009, 13(3):475-490.][DOI:10.3321/j.issn:1007-4619.2009.03.011]
[17]  Long H X, Gao X. SVM classification of SAR images based on texture and internal edge[J]. Application Research of Computers, 2011,28(9):3551-3553.[龙海翔, 高鑫. 基于纹理和边缘的SAR图像SVM分类[J]. 计算机应用研究, 2011, 28(9):3551-3553.][DOI:10.3969/j.issn.1001-3695. 2011. 09. 099]
[18]  Feng W G, Gao J, BillBuckles, et al. Research on vehicle shadow segmentation with object knowledge constraint based on multi-color spaces[J].Journal of Image and Graphics, 2011, 16(9) :1599-1606.[冯文刚, 高隽, BillBuckles,等. 多颜色空间中目标约束的车辆阴影分割研究[J]. 中国图象图形学报, 2011, 16(9):1599-1606.][DOI:10.11834/jig.20110909]
[19]  Ghaffarian S, Ghaffarian S. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97:152-159.[DOI:10.1016/j.isprsjprs.2014.08.017]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133