全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合多姿势估计特征的动作识别

DOI: 10.11834/jig.20151105

Keywords: 动作识别,多姿势估计,模板匹配,遮挡

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的为了提高静态图像在遮挡等复杂情况下的动作识别效果和鲁棒性,提出融合多种姿势估计得到的特征信息进行动作识别的方法。方法利用已得到的多个动作模型对任意一幅图像进行姿势估计,得到图像的多组姿势特征信息,每组特征信息包括关键点信息和姿势评分。将训练集中各个动作下所有图像的区分性关键点提取出来,并计算每一幅图像中区分性关键点之间的相对距离,一个动作所有图像的特征信息共同构成该动作的模板信息。测试图像在多个动作模型下进行姿势估计,得到多组姿势特征,从每组姿势特征中提取与对应模板一致的特征信息,将提取的多组姿势特征信息分别与对应的模板进行匹配,并通过姿势评分对匹配值优化,根据最终匹配值进行动作分类。结果在两个数据集上,本文方法与5种比较流行的动作识别方法进行比较,获得了较好的平均准确率,在数据集PASCALVOC2011-val上较其他一些最新的经典方法平均准确率至少提高近2%。在数据集Stanford40actions上,较其他一些最新的经典方法平均准确率至少提高近6%。结论本文方法融合了多个姿势特征,并且能够获取关键部位的遮挡信息,所以能较好应对遮挡等复杂环境情况,具有较高的平均识别准确率。

References

[1]  Yang W, Wang Y, Mori G.Recognizing human actions from still images with latent poses[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.San Francisco, CA:IEEE, 2010:2030-2037.
[2]  Yang Y, Ramanan D. Articulated pose estimation with flexiblemixtures-of-parts[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Colorado Springs, CO:IEEE, 2011:1385-1392.
[3]  Yao B, Fei-Fei L.Action recognition with exemplar based 2.5 D graph matching[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer, 2012:173-186.
[4]  Khan F S, Weijer vandeJ, Rao M A, et al. Semantic pyramids for gender and action recognition[J].IEEE Transactions on Image Processing, 2014, 23(8):3633-3645.
[5]  Desai C, Ramanan D. Detecting actions, poses, and objects with relational phraselets[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer, 2012:158-172.
[6]  Sharma G, Jurie F, Schmid C.Expanded parts model for human attribute and action recognition in still images[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Portland, OR:IEEE, 2013:652-659.
[7]  Sadeghi M A, Farhadi A.Recognition using visual phrases[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO:IEEE, 2011:1745-1752.
[8]  Felzenszwalb P F, Huttenlocher D P.Pictorial structures for object recognition[J].International Journal of Computer Vision, 2005, 61(1):55-79.
[9]  Khan F S, Anwer R M, Weijer van de J, et al. Coloring action recognition in still images[J]. International Journal of Computer Vision, 2013, 105(3):205-221.
[10]  Delaitre V, Laptev I, Sivic J.Recognizing human actions in still images:a study of bag-of-features and part-based representations[C]//Proceedings of the 21st British Machine Vision Conference. Aberystwyth:BMVA, 2010:97.1-97.11.
[11]  Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(9):1627-1645.
[12]  Eichner M, Marin-Jimenez M, Zisserman A, et al. 2d articulated human pose estimation and retrieval in (almost) unconstrained still images[J]. International Journal of Computer Vision, 2012, 99(2):190-214.
[13]  Walk S, Majer N, Schindler K, et al. New features and insights for pedestrian detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA:IEEE,2010:1030-1037.
[14]  Yao B, Jiang X, Khosla A, et al. Human action recognition by learning bases of action attributes and parts[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:1331-1338.
[15]  Wang X, Wo B H, Guan Q, et al. Human action recognition based on manifold learning[J]. Journal of Image and Graphics, 2014, 19(6):914-923.[王鑫, 沃波海, 管秋, 等. 基于流形学习的人体动作识别[J].中国图象图形学报, 2014, 19(6):914-923.][DOI:10.11834/jig.20140612]
[16]  Wang Y Y, Li Y B, Ji X F. Human action recognition based on super-interst points features[J]. Journalof Image and Graphics, 2013, 18(7):805-812.[王扬扬, 李一波, 姬晓飞. 人体动作的超兴趣点特征表述及识别[J].中国图象图形学报, 2013, 18(7):805-812.][DOI:10.11834/jig.20130710]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133