全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单形体体积最小化的差分进化光谱解混算法

DOI: 10.11834/jig.20151113

Keywords: 高光谱遥感,光谱解混,端元,非负矩阵分解,差分进化

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的光谱解混是高光谱遥感图像处理的核心技术。当图像不满足纯像元假设条件时,传统算法难以适用,基于(单形体)体积最小化方法提供了一种有效的解决途径。然而这是一个复杂的约束最优化问题,更由于图像噪声等不确定性因素的存在,导致算法容易陷入局部解。方法引入一种群智能优化技术-差分进化算法(DE),借助其较强的全局搜索能力以及优越的处理高维度问题的能力,并通过对问题编码,提出了一种体积最小化的差分进化(VolMin-DE)光谱解混算法。结果模拟数据和真实数据实验的结果表明,与现有算法相比,该算法在15端元时精度(光谱角距离)可提高7.8%,当端元数目少于15个时,其精度普遍可以提高15%以上,特别是10端元时精度可以提高41.3%;在20~50dB的噪声范围内,精度变化在1.9~3.2(单位:角度)之间,传统算法在2.2~3.5之间,表明该算法具有相对较好的噪声鲁棒性。结论本文算法适用于具有纯像元以及不存在纯像元(建议最大纯度不低于0.8)这两种情况的高光谱遥感图像,并可在原始光谱维度进行光谱解混,从而避免降维所带来的累计误差,因此具有更好的适应范围和应用前景。

References

[1]  Tong Q X, Zhang B, Zheng L F. Hyperspectral Remote Sensing[M]. Beijing:Higher Education Press, 2006:246-282.[童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京:高等教育出版社, 2006:246-282.]
[2]  Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1):44-57[DOI:10.1109/79.974727]
[3]  Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data:in Summaries[J]. Fifth JPL Airborne Earth Science Workshop., 1995:23-26.
[4]  Winter M E. N-FINDR:an algorithm for fast autonomous spectral end-member determination in hyperspectral data[J]. Proceedings of SPIE, 1999, 3753:266-275.[DOI:10.1117/12.366289]
[5]  Nascimento J M P, Dias J M B. Vertex component analysis:a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910.[DOI:10.1109/TGRS.2005.844293]
[6]  Miao L D, Qi H R. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):765-777.[DOI:10.1109/GRS.2006.888466]
[7]  Yu Y, Guo S, Sun W D. Minimum distance constrained non-negative matrix factorization for the endmember extraction of hyperspectral images[J]. Proceedings of the SPIE, 2007, 6790:151-159.[DOI:10.1117/12.748379]
[8]  Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):161-173.[DOI:10.1109/TGRS.2008. 2002882]
[9]  Liu X S, Wang B, Zhang L M. Hyperspectral unmixing based on nonnegative matrix factorization[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1):27-32.[刘雪松, 王斌, 张立明. 基于非负矩阵分解的高光谱遥感图像混合像元分解[J]. 红外与毫米波学报, 2011, 30(1):27-32.]
[10]  Morten A, Mikkel N S, Jan L. Unmixing of hyperspectral images using bayesian non-negative matrix factorization with volume prior[J]. Journal of Signal Processing Systems, 2011, 65:479-496.[DOI:10.1007/s11265-010-05 33-2]
[11]  Wang N, Zhang L P, Du B. Minimum spectral correlation constraint algorithm based on non-negative matrix factorization for hyperspec-tral unmixing[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1):22-26.[王楠, 张良培, 杜博. 最小光谱相关约束NMF的高光谱遥感图像混合像元分解[J]. 武汉大学学报:信息科学版, 2014, 39(1):22-26][DOI:10.13203/j. whugis20120572]
[12]  Zhang B, Sun X, Gao L R, et al. Endmember extraction of hyperspectral remote sensing images based on the Ant Colony Optimization (ACO) algorithm[J]. IEEE Trainsactions on Geoscience and Remote Sensing, 2011, 49(7):2635-2646.[DOI:10.1109/TGRS.2011.2108305]
[13]  Gao L R, Gao J W, Li J, et al. Multiple algorithm integration based on Ant Colony Optimization for endmember extraction from hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8:2569-2582.[DOI:10.1109/JSTARS.2014.2371615]
[14]  Zhang B, Sun X, Gao L R, et al. A method of endmember extraction in hyperspectral remote sensing image based on discrete partical swarm optimization[J]. Spectroscopy and Spectral Analysis, 2011:31(9):2455-2461.[张兵, 孙旭, 高连如, 等. 一种基于离散粒子群优化算法的高光谱图像端元提取方法[J]. 光谱学与光谱分析, 2011, 31(9):2455-2461.][DOI:10.3964/j.issn. 1000-593(2011)09-2455-07]
[15]  Dai H P, Wang X, Hu H L, et al. Nonsmooth nonnegative matrix factorization algorithm based on particle swarm optimization[J]. Computer Engineering, 2013, 39(1):204-207.[戴华平, 王旭, 胡红亮, 等. 基于粒子群优化的非平滑非负矩阵分解算法[J]. 计算机工程, 2013, 39(1):204-207.][DOI:10.3969/j.issn.1000-3428.2013.01. 044]
[16]  Yang B, Luo W F. Constrained NMF based high-dimension adaptive particle swarm optimization algorithm for endmember extraction from hyperspectral remote sensing image[J]. Journal of Remote Sensing, 2015,19(2):240-253.[杨斌, 罗文斐. 约束非负矩阵分解框架下高维自适应粒子群端元提取算法[J]. 遥感学报, 2015,19(2):240-253.]
[17]  Zhong Y F, Zhao L, Zhang L P. An adaptive differential evolution endmember extraction algorithm for hyperspectral remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6):1061-1065.[DOI:10.1109/LGRS. 2013. 2285476]
[18]  Rainer S, Kenneth P. Differential Evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces[R]. Technical Report, International Computer Science Institute, 1995(8):22-25.
[19]  Rainer S, Kenneth P. Differential evolution―a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11:341-359.[DOI:10.1023/A:1008202821328]
[20]  Jarmo I, Jon I, Jouni L. Differential evolution training algorithm for feed-forward neural networks[J]. Neural Processing Letters, 2003(17):93-105[DOI:10.1023/A:1022995128597]
[21]  更多...
[22]  Meng H Y, Zhang X H, Liu S Y. A differential evolution based on double populations for constrained multi-objective optimization problem[J]. Chinese Journal of Computers,2008,31(2):228-235.[孟红云,张小华,刘三阳. 用于约束多目标优化问题的双群体差分进化算法[J]. 计算机学报, 2008,31(2):228-235.]
[23]  Dong L L, Huang B, Jie J. Task scheduling based on differential evolution algorithm in cloud computing[J]. Computer Engineering and Applications,2014, 50(5): 90-95.[董丽丽,黄贲,介军. 云计算中基于差分进化算法的任务调度研究[J]. 计算机工程与应用, 2014,50(5): 90-95][DOI:10.3778/j.issn.1002-8331.1205-0043]
[24]  Zhang B, Gao L R. Hyperspectral image classifycation and target detection[M]. Beijing: Science Press, 2011: 102-150.[张兵, 高连如. 高光谱图像分类与目标探测[M]. 科学出版社, 2011: 102-150.]
[25]  Abdullah K, David W C, Alice E S. Multi-objective optimization using genetic algorithms: a tutorial[J]. Reliability Engineering and System Safety, 2006, 91: 992?1007.[DOI: 10.1016/j.ress.2005.11.018]
[26]  Lee D D, Seung H S. Learning the parts of objects by nonnegative matrix factorization[J]. Natrue, 1999, 401(6755): 788-791.[DOI: 10.1038/ 44565]
[27]  Lee D D, Seung H S. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2001, 13:556-562.[DOI:10.1.1.31.7566]
[28]  Darrell W. A genetic algorithm tutorial[J]. Statistics and Computing, 1994(4):65-85.[DOI:10.1007/BF00175354]
[29]  Jakob V, Ren\'e T. A comparative study of differential evolution, particle swarm optimiza tion, and evolutionary algorithms on numerical benchmark problems[C]//Proceedings of Congress on Evolutionary Computation. Washington DC:IEEE, 2014,2:1980-1987.[DOI:10.1109/CEC.2004.1331139]
[30]  G?mperle R, Müller S D, Koumoutsakos P. A parameter study for differential evolution[J]. Advances in intelligent systems, fuzzy systems, evolutionary computation, 2002, 10:293-298.
[31]  Ronkkonen J, Kukkonen S, Price K V. Real-parameter optimization with differential evolution[C]//Proceedings of IEEE Congress on Evolutionary Computation, United States:IEEE, 2005, 1:506-513.[DOI:10.1109/CEC.2005.15547 25]
[32]  Yang Q W, Cai L X, Yun C. A survey of differential evolution algorithms[J]. PR&AI, 2008, 21(4):506-513.[杨启文, 蔡亮薛, 云灿. 差分进化算法综述[J]. 模式识别与人工智能, 2008, 21(4):506-513.]
[33]  Heinz D C, Chang C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 529-545 [DOI: 10.1109/36. 911111]
[34]  Clark R N, Swayze G A, Wise R, et al. splib06b. USGS Digital Spectral Library. 2007, [2013-12-3]. http://speclab. cr.usgs.gov/spectral-lib
[35]  Swayze G, Clark R, Sutley S, et al. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada[C].Summaries of the Third Annual JPL Airborne Geosciences Workshop. United States: AVIRIS Workshop JPL Publication, 1992: 47-49.
[36]  Chang C, Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):608-619.[DOI: 10.1109/TGRS.2003.819189]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133