全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带形状控制的自由曲线曲面参数样条

DOI: 10.11834/jig.20151110

Keywords: 基函数,有理样条函数,逼近样条函数,G2-连续

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的样条曲线曲面的构造是工程制图中的一个重要部分。针对双曲抛物面上参数样条曲线的构造,在已有的研究基础上提出了一种样条方法使曲线曲面可以任意地逼近一个多边形或者一个网格。方法在标准四面体内构造一个双曲抛物面,在该曲面上以基函数参数化的方法定义一种带形状参数的参数样条曲线曲面,样条基函数通过将双曲抛物面的有理参数化进行限定,生成单参数有理样条基函数。详细研究了样条的保形性及其端点性质。结果样条曲线具有一个可变的形状控制因子,可以对曲线进行调整,能以任意精度逼近这个控制四边形或网格。对空间节点列,利用该样条可以生成G2-连续空间曲线,同样对于空间网格可以构造G2-连续的拟合曲面,它所对应的基函数可以是有理形式。结论实验结果表明,本文在笔者已有的研究基础上提出的参数样条曲线可以通过重心坐标系变换适应为任意的四边形,除了空间四面体内的样条曲线,四面体退化成四边形同样可实现。

References

[1]  Bajaj C, Xu G. A-splines:local interpolation and approximation using Ck-continuous piecewise real algebraic curves[C]//Computer Science Technical Report, America.WestLafayette:Purdue University of America. 1992, 92-144.
[2]  Bajaj C, Xu G. Data fitting with cubic A-spline[C]//Proceedings of Computer Graphics International Australia. Melbourne:World Scientific Publishing, 1996:105-113.
[3]  Mou H, Zhao G, Wang Z, et al.Simultaneous blending of convex polyhedra by algebraic splines[J]. Computer-Aided Design, 2007, 39 (11):1003-1011.
[4]  Paluszny M, Patterson R R, Geometric control of G2-cubic A-spline[J]. Computer Aided Geometric Design, 1998,15 (3) :161-187.
[5]  Duan Q, Bao F, Du S, et al. Local control of interpolating rational cubic spline curves[J] . Computer Aided Design, 2009, 41(11):825-829.
[6]  Alcazar J G. On the different shapes arising in a family of plane rational curves depending on a parameter[J]. Computer Aided Geometric Design, 2010, 27 (2):162-178.
[7]  Hussain M Z, Sarfraz M. Positivity preserving interpolation of positive data by rational cubics[J]. Journal of Computational and Applied Mathematics, 2008, 218(2):446-458.
[8]  Sánchez-Reyes J. Complex rational bézier curves[J]. Computer Aided Geometric Design, 2009, 26(8):865-876.
[9]  Biard L, Farouki R T, Szafran N.Construction of rational surface patches Bounded by lines of curvature[J]. Computer Aided Geometric Design, 2010, 27(5):359-371.
[10]  Peng F F, Chen J J. Spline on a generalized hyperbolic paraboloid[J]. Journal of Computat-ional and Applied Mathematics, 2011, 235(8):2451-2458.
[11]  Peng F F, Han X L. Parametric splines on a parabolic surface[J]. Journal of Computational and Applied Mathematics, 2009, 229 (1):183-191.
[12]  Shi F Z. Computer aided geometric design and non-uniform rational B-spline[M]. Beijing:Higher education press, 2001.[施法中.计算机辅助几何设计与非均匀有理B样条[M]. 北京:高等教育出版社,2001.]
[13]  Ju T, Liepa P, Warren J. A general geometric construction of coordinates in aconvex simplicial polytope[J]. Computer Aided Geometric Design, 2007, 24(3):161-178.
[14]  Chen J J, Peng F F. Approximation splines of continuity over hyperbolic paraboloid[J]. Comp-uter Engineering and Application, 2011, 47(33):185-187.[陈娟娟,彭丰富. 双曲抛物面上的一类连续逼近样条[J]. 计算机工程与应用,2011, 47(33):185-187.]
[15]  Farin G. Curves and Surfaces for Computer Aided Geometric Design[M]. Berlin:Springer-Verlag Academic Press, 1997.
[16]  Xu G, Bajaj C, Xue W. Regular algebraic curve segments(i)-definitions and characteristics[J].Computer Aided Geometric Design, 2000, 17(6):485-501.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133