全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在线特征选取的多示例学习目标跟踪

DOI: 10.11834/jig.20151008

Keywords: 目标跟踪,多示例学习,Fisher线性判别,梯度增强,判别模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的传统的多示例学习跟踪在跟踪过程中使用了自学习过程,当目标跟踪失败时分类器很容易退化。针对这个问题,提出一种基于在线特征选取的多示例学习跟踪方法(MILOFS)。方法首先,该文使用稀疏随机矩阵来简化视频跟踪中图像特征的构建,使用随机矩阵投影来自高维度的图像信息。然后,利用Fisher线性判别模型构建包模型的损失函数,依照示例响应值直接在示例水平构建分类器的判别模型。最后,从梯度下降角度看待在线增强模型,使用梯度增强法来构建分类器的选取模型。结果对不同场景的图像序列进行对比实验,实验结果中在线自适应增强(OAB)、在线多实例学习跟踪(MILTrack)、加权多实例学习跟踪(WMIL)、在线特征选取多实例学习跟踪(MILOFS)的平均跟踪误差分别为36像素、23像素、24像素、13像素,本文算法在光照变化、发生遮挡,以及形变的情况下都能准确跟踪目标,且具有很高的实时性。结论基于在线特征选取的多示例学习跟踪,跟踪过程使用梯度增强法并直接在示例水平构建包模型的判别模型,可以有效克服传统多示例学习中的分类器退化问题。

References

[1]  Duda R O, Hart P E, Stork D G. Pattern Classification[M]. 2nd Edition. Wiley-Interscience Press, 2000: 44-47.
[2]  Chen C S, Zhang J, Xie Z, et al. Multi-cues object tracking based on motion consistence in random field [J]. Journal of Image and Graphics, 2015, 20(1):59-71.[陈晨树, 张骏, 谢昭, 等. 随机场中运动一致性的多线索目标跟踪[J]. 中国图象图形学报, 2015, 20(1):59-71.][DOI:10.11834/jig.20150107]
[3]  Ross D, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
[4]  Kalal Z, Matas J, Mikolajczyk K. P-N learning: bootstrapping binary classifier by structural constraints [C] // Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, United States: IEEE, 2010:49-56.
[5]  Mei X, Ling H. Robust visual tracking using L1 minimization [C] // Proceedings of the 2009 IEEE International Conference on Computer Vision, United States: IEEE, 2009: 1436-1443.
[6]  Collins R, Liu Y, Leordeanu M. Online selection of discriminative tracking features [J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2005, 27(10):1631-1643.
[7]  Avidan S. Ensemble tracking [J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2007, 29(2): 261-271.
[8]  Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting [C] // Proceedings of the 2006 British Machine Vision Conference. Edinburgh, United Kingdom: British Machine Vision Association, 2006: 47-56.
[9]  Grabner H, Bischof H. On-line boosting and vision [C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, United States: IEEE, 2006: 260-267.
[10]  Liu R, Cheng J, Lu H. A robust boosting tracker with minimum error bound in a co-training framework [C]//Proceedings of the IEEE International Conference on Computer Vision. United States: IEEE, 2009: 1459-1466.
[11]  Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning [J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2031, 33(8): 1619-1632.
[12]  Chen D C, Zhu M, Gao W, et al. Real-time object tracking via online weighted multiple instance learning [J]. Optics and Precision Engineering, 2014,22(6):1661-1667. [陈东成, 朱明, 高文, 等. 在线加权多示例学习实时目标跟踪[J].光学精密工程, 2014,22(6):1661-1667.
[13]  Zhang K H, Song H H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.
[14]  Dollàr P, Tu Z, Tao H. Feature mining for image classification [C] // Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, United States: IEEE, 2007: 4270071.
[15]  Candes E, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
[16]  Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[17]  Zhang K, Zhang L, Yang M H. Real-time compressive tracking [C] // Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer Verlag, 2012: 864-877.
[18]  Li P, Hastie T, Church K. Very sparse random projections [C]// International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, United States: Association for Computing Machinery, 2006: 287-296.
[19]  Achlioptas D. Database-friendly random projections: Johnson-Lindenstrauss with binary coins [J]. Journal of Computer and System Sciences, 2003, 66(4): 671-687.
[20]  Friedman J H. Greedy function approximation: a gradient boosting machine [J]. The Annals of Statistics, 2001, 29(5): 1189-1232.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133