全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Landsat8卫星影像的北京地区土地覆盖分类

DOI: 10.11834/jig.20150915

Keywords: Landsat8,土地覆盖,分类方法,纹理

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的土地覆盖分类能为生态系统模型、水资源模型和气候模型等提供重要信息,遥感技术运用于土地覆盖分类具有诸多优势。作为区域性土地覆盖分类应用的重要数据源,Landsat5/7的TM和ETM+等数据已逐渐失效,Landsat8陆地成像仪(OLI)较TM和ETM+增加了新的特性,利用Landsat8数据进行北京地区土地覆盖分类研究,探讨处理方法的适用性。方法首先,确定研究区域内土地覆盖分类系统,并对Landsat8多光谱数据进行预处理,包括大气校正、地形校正、影像拼接及裁剪;然后,利用灰度共生矩阵提取全色波段纹理信息,与多光谱数据进行融合;最后,使用支持向量机(SVM)进行分类,获得土地覆盖分类结果。结果经过精度评价和分析发现,6S模型大气校正和C模型地形校正预处理提高了不同类别之间的可分性,多光谱数据结合全色波段纹理特征能有效提高部分地物的土地覆盖分类精度,总体精度提高2.8%。结论相对于LandsatTM/ETM+数据,Landsat8OLI数据新增特性有利于土地覆盖分类精度的提高。本文方法适用于Landsat8OLI数据土地覆盖分类研究与应用,能够满足大区域土地覆盖分类应用需求。

References

[1]  Townshend J R, Masek J G, Huang C, et al. Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges[J]. International Journal of Digital Earth, 2012, 5(5): 373-397. [DOI: 10.1080/17538947. 2012. 713190]
[2]  Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2013, 34(7): 2607-2654. [DOI: 10.1080/01431161. 2012. 748992]
[3]  Fuller R M, Groom G B, Jones A R. Land cover map of Great Britain. An automated classification of Landsat Thematic Mapper data[J]. Photogrammetric Engineering and Remote Sensing, 1994, 60(5): 553-562.
[4]  Wang X M, Chai Z P, Gong A J. Application of BP neural network in classification of land cover ―― a case of Yutian oasis in Xinjiang[J]. Xinjiang Agricultural Sciences, 2009, 46(1): 142-146. [王雪梅, 柴仲平, 龚爱谨. BP 神经网络算法在土地覆盖分类中的应用研究――以新疆于田绿洲为例[J]. 新疆农业科学, 2009, 46(1): 142-146.]
[5]  Roy D P, Wulder M A, Loveland T R, et al. Landsat-8: Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145(1): 154-172. [DOI: 10.1016/j.rse.2014.02.001]
[6]  Xu H Q, Tang F. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance[J]. Acta Ecologica Sinica, 2013, 33(11): 3249-3257. [徐涵秋, 唐菲. 新一代 Landsat 系列卫星:Landsat 8 遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013, 33(11): 3249-3257.] [DOI: 10.5846 / stxb201305030912]
[7]  He C Y, Shi P J, Chen J, et al. A study on land use/cover change in Beijing area[J]. Geographical Research, 2001, 20(6): 679-687. [何春阳, 史培军, 陈晋, 等. 北京地区土地利用/覆盖变化研究[J]. 地理研究, 2001, 20(6): 679-687.] [DOI: 10.3321/j.issn:1000-0585.2001.06.005]
[8]  Teillet P, Guindon B, Goodenough D. On the slope-aspect correction of multispectral scanner data[J]. Canadian Journal of Remote Sensing, 1982, 8(2): 84-106.
[9]  Liu J Y. Study on national resources & environment survey and dynamic monitoring using remote sensing [J]. Journal of Remote Sensing, 1997, 1(3): 225-230. [刘纪远. 国家资源环境遥感宏观调查与动态监测研究[J]. 遥感学报, 1997, 1(3): 225-230.] [DOI: 10.11834/jrs. 19970311]
[10]  Vermote E F, Tanre D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum, 6S: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 675-686. [DOI: 10.1109 /36.581987]
[11]  Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007,28(5): 23-870. [DOI: 10.1080/01431160600746456]
[12]  Li L, Wang H, Liu Q S, et al. Land cover classification using ALOS image based on texture features and support vector machine[J]. Remote Sensing for Land & Resources, 2011, 23(4): 58-63. [李玲, 王红, 刘庆生, 等. 基于纹理特征和支持向量机的ALOS图像土地覆被分类[J]. 国土资源遥感, 2011, 23(4): 58-63.] [DOI: 10.6046/gtzyyg.2011.04.11]
[13]  Wu J, Peng D L. Vegetation classification technology of hyperspectral remote sensing based on spatial information [J]. Transactions of the CSAE, 2012, 28(5): 150-153. [吴见, 彭道黎. 基于空间信息的高光谱遥感植被分类技术[J]. 农业工程学报, 2012, 28(5): 150-153.] [DOI: 10.3969/j.issn.1002-6819.2012.05.025]
[14]  Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification [J]. IEEE Transactions on Man and Cybernetics, 1973, 3(6): 610-621. [DOI: 10. 1109/TSMC. 1973. 4309314]
[15]  Chen D, Stow D A, Gong P. Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case[J]. International Journal of Remote Sensing, 2004, 25(11): 2177-2192. [DOI: 10.1080/01431160310001618464]
[16]  Ulaby F T, Kouyate F, Brisco B, et al. Textual information in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(2): 235-245.
[17]  BO H, Ma F L, Jiao L C. Research on computation of GLCM of image texture [J]. Acta Electronica Sinica, 2006, 34 (1): 155-158. [薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析[J]. 电子学报, 2006, 34(1): 155-158.] [DOI: 10.3321/j.issn:0372-2112.2006. 01.032]
[18]  Zhu S X, Zhang R J. Research for selection of kernel functions used in support vector machine [J]. Science Technology and Engineering, 2008, 8(16): 4513-4517. [朱树先, 张仁杰. 支持向量机核函数选择的研究[J]. 科学技术与工程, 2008, 8(16): 4513-4517.] [DOI: 10.3969/j.issn.1671-1815. 2008. 16. 021]
[19]  Feng G H. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications, 2011, 47(3): 123-124. [奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-124.] [DOI: 10.3778/j.issn.1002-8331.2011.03. 037]
[20]  Wu X P, Tang Z Y, Cui H T, et al. Land cover dynamics of different topographic conditions in Beijing[J]. Acta Phytoecological Sinica, 2006, 30(2): 239-251. [吴晓莆, 唐志尧, 崔海亭, 等. 北京地区不同地形条件下的土地覆盖动态[J]. 植物生态学报, 2006, 30(2): 239-251.] [DOI: 10.3321/j.issn:1005-264X.2006.02.006]
[21]  更多...
[22]  Zhao Y S, Li J W. The process of generating the landuse /landcover map based on ETM+[J]. Science of Surveying and Mapping, 2001, 26(3): 39-42. [赵有松, 李京伟. 基于 ETM+ 制作土地利用覆盖图――以制作北京 1:5 万土地利用覆盖图为例[J]. 测绘科学, 2001, 26(3): 39-42.]
[23]  Wu X J, Wang X X. The study of city TM remote sensing classification methods[D]. Guilin: Guangxi Normal University, 2007. [吴学军, 王修信. 城市 TM 遥感图像分类方法研究 [D]. 桂林: 广西师范大学, 2007.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133