全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

点线光流预测机制的图像序列运动直线跟踪

DOI: 10.11834/jig.20150905

Keywords: 运动直线跟踪,点光流,直线光流,预测机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对复杂场景图像序列中运动直线特征的提取、跟踪问题,提出一种基于点、线光流预测机制的图像序列运动直线跟踪方法。方法首先根据图像直线的表达式定义点、线光流基本约束方程,由基本约束方程推导出关于点光流与直线光流对应关系的3个重要推论。然后依据点、线光流对应关系,利用图像序列中直线特征上的像素点光流计算直线光流的估计值并根据直线光流阈值筛选图像序列运动直线。最后由筛选出的运动直线及直线光流估计值计算直线的预测坐标并在Hough域内进行跟踪匹配,得到图像序列运动直线跟踪结果。结果通过合成及真实图像序列实验验证,本文方法能够准确地筛选出图像序列中感兴趣的运动直线,并对运动直线进行稳定地跟踪、匹配,直线跟踪结果未产生干扰直线的误匹配,直线跟踪时间消耗不超过12s。结论相对于传统的直线跟踪、匹配方法,本文方法具有较高地直线跟踪精度和较好的鲁棒性,更适用于复杂场景下的运动直线跟踪、匹配问题。

References

[1]  Duan R J, Zhao W, Huang S L, et al. Fast line detection algorithm based on improved Hough transformation[J]. Chinese Journal of Scientific Instrument, 2010, 31(12): 2774-2780. [段汝娇, 赵伟, 黄松岭, 等. 一种基于改进Hough变换的直线快速检测算法[J]. 仪器仪表学报, 2010, 31(12): 2774-2780.]
[2]  Zhao L K, Song W D, Wang J X. Straight line extraction algorithm of freeman chain code priority[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 42-46. [赵丽科, 宋伟东, 王竞雪. Freeman 链码优先级直线提取算法研究[J]. 武汉大学学报: 信息科学版, 2014, 39(1): 42-46.] [DOI: 10.13203/j. whugis20120690]
[3]  Cui C H. Ngan K N. Global propagation of affine invariant features for robust matching [J]. IEEE Transactions on Image Processing, 2013, 22(7): 2876-2888. [DOI: 10.1109/TIP. 2013. 2246521]
[4]  Zhang L, Koch R. Line matching using appearance similarities and geometric constraints [C]//The Symposium of the 34th German Association for Pattern Recognition. Berlin Heidelberg: Springer, 2012: 236-245. [DOI: 10.1007/978-3-642-32717-9_24]
[5]  Wang Z H, Wu F C. Mean-Standard deviation descriptor and line matching[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(1): 32-39. [王志衡, 吴福朝.均值-标准差描述子与直线匹配[J].模式识别与人工智能, 2009, 22(1):32-39.] [DOI: 10.3969/j.issn.1003-6059. 2009. 01. 006]
[6]  Chen Z, Gao M T, Yang S Y. A new method of lines tracking based hough transform[J]. Computer Applications, 2003, 23(10): 30-32. [陈震, 高满屯, 杨声云. 基于 Hough 变换的直线跟踪方法[J]. 计算机应用, 2003, 23(10): 30-32.]
[7]  Zhong Q, Zhou J, Wu Q Z, et al. A method of line tracking based on hough transforms and edge histogram[J]. Opto-Electronic Engineering, 2014, 41(3): 89-94. [钟权, 周进, 吴钦章, 等. 基于 Hough 变换和边缘灰度直方图的直线跟踪算法[J]. 光电工程, 2014, 41(3): 89-94.] [DOI : 10.3969/j.issn.1003-501X.2014.03.014]
[8]  Fung H K, Wong K H. Quadrangle detection based on a robust line tracker using multiple kalman models[J]. Journal of ICT Research and Applications, 2013, 7(2): 137-150. [DOI: 10.5614/itbj.ict.res.appl.2013.7.2.3]
[9]  Yoon Y, Kosaka A, Kak A C. A new Kalman-filter-based framework for fast and accurate visual tracking of rigid objects[J]. IEEE Transactions on Robotics, 2008, 24(5): 1238-1251. [DOI: 10.1109/TRO.2008.2003281]
[10]  Zhang J, Li H, Nie Q, et al. A retinal vessel boundary tracking method based on bayesian theory and multi-scale line detection[J]. Computerized Medical Imaging and Graphics, 2014: 517-525.[DOI:0.1016/j.compmedimag.2014.05.010]
[11]  Willett P, Balasingam B, Dunham D, et al. Multiple target tracking from images using the maximum likelihood HPMHT[C]// Proceeding of International Conference on Optical Engineering and Applications. San Diego: SPIE, 2013: 88570. [DOI: 10.1117/12.2027297]
[12]  Zhang C X, Chen Z, Li M, et al. Anisotropic optical flow algorithm based on self-adaptive cellular neural network[J]. Journal of Electronic Imaging, 2013, 22(1):1-10. [DOI: 10.1117/1.JEI.22. 1.013038]
[13]  Horn B K P, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1): 185-203.[DOI : 10.1117/12. 965761]
[14]  Holte M B, Moeslund T B, Fihl P. View invariant gesture recognition using 3D optical flow and harmonic motion context[J]. Computer Vision and Image Understanding, 2010, 114 (12): 1353-1361. [DOI: 10.1016/j.cviu.2010.07.012]
[15]  Yan J H, Xu J F, Ai S F, et al. Airport runway detection algorithm based on local multi-features [J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1714-1720. [闫钧华, 许俊峰, 艾淑芳, 等. 基于局部多特征的机场跑道检测算法[J]. 仪器仪表学报, 2014, 35(8): 1714-1720.] [DOI: 10.3969/j.issn.0254-3087. 2014.08.005]
[16]  Herissé B, Hamel T, Mahony R, et al. Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow [J]. IEEE Transactions on Robotics, 2012, 28(1): 77-89. [DOI: 10.1109/TRO.2011.2163435]
[17]  Xu H K, Jiang M Y, Yang M Q. Registration of multimodal brain medical images based on improved optical flow model[J]. Acta Electronica Sinica, 2012, 40(3): 525-529. [许鸿奎,江铭炎,杨明强. 基于改进光流场模型的脑部多模医学图像配准[J]. 电子学报, 2012, 40(3): 525-529.] [DOI: 10.3969/j.issn.0372-2112. 2012.03.019]
[18]  Qu H B, Li J C, Wang J Q, et al. Robust point set matching under variational bayesian framework[C]//Proceeding of International Conference on Pattern Recognition. Stockholm: IEEE, 2014: 58-63.[DOI: 10.1109/ICPR.2014.20]
[19]  Torresani L, Kolmogorov V, Rother C. A dual decomposition approach to feature correspond-ence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 259-271. [DOI: 10.1109/TPAMI.2012.105]
[20]  Cai J, Huang P F. Research of a Real-time feature point tracking method based on the combination of improved SURF and P-KLT algorithm[J]. Acta Aeronautica ET Astronautica Sinica, 2013, 34(5): 1204-1214. [蔡佳, 黄攀峰. 基于改进SURF和P-KLT算法的特征点实时跟踪方法研究[J]. 航空学报, 2013, 34(5): 1204-1214.] [DOI: 10.7527/S1000-6893.2013.0206]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133