全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

强度和梯度稀疏约束下的图像平滑

DOI: 10.11834/jig.20150903

Keywords: 图像平滑,像素强度和梯度,稀疏,交替最小化

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的为了在图像平滑过程中达到更好地保留边缘去除细节效果,提出一种以像素强度和梯度的稀疏特性为双重约束的图像平滑算法。方法该算法首先构造一个像素强度和梯度的0-范数函数,作为平滑模型的约束项;然后采用半二次变量分裂法引入辅助变量,构造最终的较易求解的平滑模型;最后利用交替最小化算法求解该模型,并在傅里叶频域内求解平滑图像的解析解,以加快算法的运行速度。结果在自然图像上进行的平滑实验并与其他算法对比表明,本文的算法时间仅需3.42s,比双边滤波算法快7.85s,能够较好地满足图像平滑保留边缘去除细节的要求以及计算效率的要求。结论本文以强度和梯度的稀疏特性为约束的图像平滑算法能够较好地去除图像中不重要的细节,保留图像的边缘特征,较好地实现了图像的平滑效果,适用于含有复杂背景噪声的图像平滑去噪及边界增强。

References

[1]  Desolneux A, Moisan L, Morel J M. From Gestalt Theory to Image Analysis: A Probabilistic Approach [M]. Berlin Heidelberg: Springer, 2007.
[2]  Jia D Y, Huang F G, Su H. A new noise removal method based on Fourth-Order nonlinear diffusion [J]. Chinese Journal of Computers, 2005, 28(5): 882-891. [贾迪野, 黄凤岗, 苏菡. 一种新的基于高阶非线性扩散的图像平滑方法 [J]. 计算机学报, 2005, 28(5): 882-891.] [DOI: 10.3321/j.issn:0254-4164.2005.05.017]
[3]  Li Y Y, Wang S T, Hu D W, et al. A new Gaussian noise filter based on interval Type-2 fuzzy logic system [J]. Journal of Computer Research and Development, 2004, 41(9): 1507-1513. [李岳阳, 王士同, 胡德文, 等. 基于区间类型 2 模糊系统的高斯噪声新滤波器 [J]. 计算机研究与发展, 2004, 41(9): 1507-1513.]
[4]  Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]// Proceedings of IEEE 6th International Conference on Computer Vision. New Delhi, India: Narosa Publishing House, 1998: 839-846. [DOI: 10.1007/s11263-007-0110-8]
[5]  Paris S, Durand F. A fast approximation of the bilateral filter using a signal processing approach [C]//Proceedings of the 9th European Conference on Computer Vision. Berlin, Germany: Springer, 2006: 568-580. [DOI: 10.1007/s11263-007-0110-8]
[6]  Weiss B. Fast median and bilateral filtering [J]. ACM Transactions on Graphics, 2006, 25(3): 519-526. [DOI: 10.1145/1141911.1141918]
[7]  Zhang Q, Xu L, Jia J. 100+ times faster weighted median filter [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE, 2014: 2830-2837. [DOI: 10.1109/CVPR.2014.362]
[8]  Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [C]// Proceedings of the 11th Annual International Conference of the Center for Nonlinear Studies. Amsterdam, Netherlands: Elsevier Science, 1992, 60(1): 259-268. [DOI: 10.1016/0167-2789(92)90242-F]
[9]  Yu L H, Feng Y Q, Chen W F. Adaptive regularization method based total variational de-noising algorithm [J]. Journal of Image and Graphics, 2009 (10): 1950-1954. [余丽红, 冯衍秋, 陈武凡. 基于自适应正则化的全变分去噪算法 [J]. 中国图象图形学报, 2009 (10): 1950-1954.] [DOI:10.11834/jig.20091004]
[10]  Wang S, Chen Y T, Feng H J, et al. TWIST―TV regularization based image deblurring method [J]. Infrared and Laser Engineering, 2014, 43(6): 2000-2006. [王莎, 陈跃庭, 冯华君, 等. 基于TWIST―TV 约束的图像去模糊方法 [J]. 红外与激光工程, 2014, 43(6): 2000-2006.]
[11]  Farbman Z, Fattal R, Lischinski D, et al. Edge-preserving decompositions for multi-scale tone and detail manipulation [J]. ACM Transactions on Graphics, 2008, 27(3): #67. [DOI: 10.1145/1360612.1360666]
[12]  Xu L, Lu C, Xu Y, et al. Image smoothing via L0 gradient minimization [J]. ACM Transactions on Graphics, 2011, 30(6): #174. [DOI:10.1145/2024156.2024208]
[13]  Snyman J. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-based Algorithms [M]. Berlin Heidelberg: Springer, 2005.
[14]  Yang J, Zhang Y, Yin W. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise [J]. SIAM Journal on Scientific Computing, 2009, 31(4): 2842-2865. [DOI: 10.1137/080732894]
[15]  Wang Y, Yang J, Yin W, et al. A new alternating minimization algorithm for total variation image reconstruction [J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 248-272. [DOI:10.1137/080724265]
[16]  Wang Y, Yin W, Zhang Y. A fast algorithm for image deblurring with total variation regularization [R]. Houston, Texas: Department of Computational and Applied Mathematics of Rice University, 2007.
[17]  Van L C. Computational Frameworks for the Fast Fourier Transform [M]. Philadelphia: Siam, 1992.
[18]  Bracewell R N, Bracewell R N. The Fourier Transform and its Applications [M]. 2nd ed. New York: McGraw-Hill, 1986: 298-301.
[19]  Lin Y C, Cui Y P, Huang Y G. Study on edge detection and target recognition in complex background [J]. Optics and Precision Engineering, 2006, 14(3): 509-514. [林玉池, 崔彦平, 黄银国. 复杂背景下边缘提取与目标识别方法研究 [J]. 光学精密工程, 2006, 14(3): 509-514.] [DOI: 10.3321/j.issn:1004-924X.2006.03.032]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133