Sande K E A, Gevers T, Snoek C G M. Evaluating color descriptors for object and scene recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1582-1596.
[2]
Burghouts G J, Geusebroek J M. Performance evaluation of local colour invariants [J]. Computer Vision and Image Understanding, 2009, 113(1): 48-62.
[3]
Weijer J, Gevers T, Smeulders A W. Robust photometric invariant features from the color tensor [J]. IEEE Trans. on Image Processing, 2006, 15(1): 118-127.
[4]
Brown M, Susstrunk S. Multi-spectral SIFT for scene category recognition [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011: 177-184.
[5]
Weijer J, Gevers T, Bagdanov A D. Boosting color saliency in image feature detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 150-156.
[6]
Zhang J, Barhomi Y, Thomas S. A new biologically inspired color image descriptor [C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer Berlin Heidelberg, 2012:7-13.
[7]
Blum M, Springenberg J T, Wulfing J, et al. A learned feature descriptor for object recognition in RGB-D data [C]//Proceedings of IEEE International Conference on Robotics and Automation. Saint Paul, USA: IEEE, 2012: 1298-1303.
[8]
Bo L F, Lai K V, Ren X F, et al. Object Recognition with Hierarchical Kernel Descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011:1729-1736.
[9]
Bo L F, Ren X F, Fox D. Depth kernel descriptors for object recognition[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011:821-826
[10]
Tombari F, Salti S, Stefano L D. A combined texture-shape descriptor for enhanced 3D feature matching [C]//Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011:809-812.
[11]
Tombari F, Salti S D, Stefano L. Unique signatures of histograms for local surface description [C]//Proceedings of European Conference on Computer Vision. Berlin Heidelberg: Springer, 2010:356-369.
[12]
Nascimento E R, Oliveira G L, Campos M F M, et al. BRAND: a robust appearance and depth descriptor for RGB-D images [C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012:1720-1726.
[13]
Laptev I. On space-time interest points [J]. International Journal of Computer Vision, 2005, 64(2/3):107-123.
[14]
Natarajan P, Wu S, Vitaladevuni S N P, et al. Multi-channel shape-flow kernel descriptors for robust video event detection and retrieval [C]//Proceedings of the 12th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2012:301-314.
[15]
Trulls E, Sanfeliu A, Moreno-Noguer F. Spatiotemporal descriptor for wide-baseline stereo reconstruction of non-rigid and ambiguous scenes[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2012:441-454.
[16]
Laptev I, Marsza?ek M, Schmid C, et al. Learning realistic human actions from movies [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008:1-8.
[17]
Scovanner P, Ali S, Shah M. A 3-dimensional sift descriptor and its application to action recognition [C]//Proceedings of International conference on Multimedia. Augsburg, Germany: Association for Computing Machinery, 2007: 24-29
[18]
Klaser A, Marsza?ek M, Schmid C. A spatio-temporal descriptor based on 3D-gradients[C]//Proceedings of the British Machine Vision Conference. Leeds, UK: British Machine Vision Association, 2008:275-284.
[19]
Zhao G, Pietikainen M. Dynamic texture recognition using volume local binary patterns[C]//Proceedings of Workshop on Dynamical Vision. Berlin: Springer, 2006:165-177.
[20]
Willems G, Tuytelaars T, Gool L V. An efficient dense and scale-invariant spatio-temporal interest point detector[C]//Proceedings of the 10th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008: 650-663.
[21]
Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):915-928.
[22]
Chen J, Zhao G, Pietikainen M. An improved local descriptor and threshold learning for unsupervised dynamic texture segmentation [C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Kyoto, Japan: IEEE, 2009:460-467.
[23]
Paivarinta J, Rahtu E, Heikkila J. Volume local phase quantization for blur-insensitive dynamic texture classification [C]//Proceedings of Scandinavian conference on Image analysis. Berlin: Springer Verlag, 2011: 360-369.
[24]
Norouznezhad E, Harandi M T, Bigdeli A, et al. Directional space-time oriented gradients for 3D visual pattern analysis [C]//Proceedings of the 12th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2012: 736-749.
[25]
Xia L, Aggarwal J K. Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2009: 2834-2841.
[26]
Zhang H, Parker L E. 4-Dimensional local spatio-temporal features for human activity recognition [C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011: 2044-2049.
[27]
Wu J X, Rehg J M. Beyond the euclidean distance: creating effective visual codebooks using the histogram intersection kernel [C]//Proceedings of IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 630-637.
[28]
Pele O, Werman M. Fast and robust earth mover’s distances [C]//Proceedings of IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009:460-467.
[29]
Jegou H, Douze M, Schmid C. Improving Bag-of-Features for large scale image search [J]. International Journal of Computer Vision, 2010, 87 (3): 316-336.
[30]
Jegou R, Douze M, Schmid C. Product quantization for nearest neighbor search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 117-128.
[31]
Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003: 1470-1477.
[32]
Gemert J C, Geusebroek J M, Veenman C J, et al. Kernel codebooks for scene categorization [C]//Proceedings of the European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008: 696-709.
[33]
Perronnin F S, Nchez J, Mensink T. Improving the fisher kernel for large-scale image classification [C]//Proceedings of the European Conference on Computer Vision. Berlin Heidelberg: Springer, 2010: 143-156.
[34]
Jegou H, Perronnin F, Douze M,et al. Aggregating local image descriptors into compact codes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1704-1716.
[35]
Zhou X, Yu K, Zhang T, et al. Image classification using super-vector coding of local image descriptors [C]//Proceedings of the European Conference on Computer Vision. Berlin Heidelberg: Springer, 2010: 141-154.
[36]
Moreels P, Perona P. Evaluation of features detectors and descriptors based on 3D objects [J]. International Journal of Computer Vision, 2007, 73(3):263-284.
[37]
Aan?s H, Dahl A, Pedersen K S. Interesting interest points: a comparative study of interest point performance on a unique data set [J]. International Journal of Computer Vision, 2012, 97(1):18-35.
[38]
Kaneva B, Torralba A, Freeman W T. Evaluation of image features using a photorealistic virtual world [C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011:2282-2289.
[39]
Gauglitz S, Hollerer T, Turk M. Evaluation of interest point detectors and feature descriptors for visual tracking [J]. International Journal of Computer Vision, 2011, 94(3) 335-360.
[40]
Gil A, Mozos O M, Ballesta M, et al. A comparative evaluation of interest point detectors and local descriptors for visual SLAM [J]. Machine Vision and Applications, 2010, 21(6):905-920.
[41]
Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630.
[42]
Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 2(4):509-522.
[43]
Schaffalitzky F, Zisserman A. Multi-View matching for unordered image sets[C]//Proceedings of the 7th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2002:414-431.
[44]
Freeman W, Adelson E. The Design and use of steerable filters [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991, 13(9): 891-906.
[45]
Lazebnik S, Schmid C, Ponce J. Sparse texture representation using affine-invariant neighborhoods[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE, 2003:319-324.
[46]
更多...
[47]
Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2004:511-517.
[48]
Ce L, Yuen J, Torralba A. SIFT Flow: dense correspondence across scenes and its applications [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33(5):978-994.
[49]
Bay H, Ess A, Tuytelaars T, et al. SURF: speeded up robust features [J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.
[50]
Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo [J]. IEEE Transactions on Pattern Analysis and Machine, 2010, 32(5):815-830.
[51]
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005: 886-893.
[52]
Takacs G, Chandrasekhar V, Tsai S, et al. Unified real-time tracking and recognition with rotation invariant fast features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010: 934-941.
[53]
Ambai M, Yoshida Y. CARD: compact and real-time descriptors[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011:97-104.
[54]
Chandrasekhar V, Takacs G, Chen D. Compressed histogram of gradients: a low-bitrate descriptor [J]. International Journal of Computer Vision, 2012, 96(3): 384-399.
[55]
Boix X, Gygli M, Roig G, et al. Sparse quantization for patch description [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013: 2842-2849.
[56]
Huang C R, Chen C R, Chung P C. Contrast context histogram: an efficient discriminating local descriptor for object recognition and image matching [J]. Pattern Recognition, 2008, 41(10): 3071-3077.
[57]
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine, 2002, 24(7):971-987.
[58]
Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: Application to face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12):2037-2041.
[59]
Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):657-662.
[60]
Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):915-928.
[61]
Wu J X, Rehg J M. CENTRIST: a visual descriptor for scene categorization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1489-1501.
[62]
Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification [J]. IEEE Trans. on Image Process, 2010, 19(6):1657-1663.
[63]
Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions [J]. IEEE Trans. on Image Process, 2010, 19(6):1635-1650.
[64]
Zhang B C, Gao Y S, Zhao S Q, et al. Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor [J]. IEEE Trans. on Image Process, 2010, 19(2):533-544.
[65]
Ramirez R A, Rojas C J, Chae O. Local directional number pattern for face analysis: face and expression recognition[J]. IEEE Trans. on Image Processing, 22(5): 1740-1752.
[66]
Liao S, Law M W K, Chung A C S. Dominant local binary patterns for texture classification[J]. IEEE Trans. on Image Process, 2009, 18(5):1107-1118.
[67]
Zhao Y, Huang D S, Jia W. Completed local binary count for rotation invariant texture classification [J]. IEEE Trans. on Image Process, 2012, 21(10):4492-4497.
[68]
Murala S, Maheshwari R P, Balasubramanian R. Local tetra patterns: a new feature descriptor for content-based image retrieval [J]. IEEE Trans. on Image Process, 2012, 21(5):2874-2886.
[69]
Maani R, Kalra S, Yang Y H. Rotation invariant local frequency descriptors for texture classification [J]. IEEE Trans. on Image Process, 2013, 22(6):2409-2419.
[70]
Zhao G Y, Ahonen T, Matas J, et al. Rotation-invariant image and video description with local binary pattern features[J]. IEEE Trans. on Image Process, 2012, 21(4):1465-1477.
[71]
Ojansivu V, Heikkila J. Blur insensitive texture classification using local phase quantization[C]//Proceedings of the International Conference on Image and Signal Processing. Berlin Heidelberg: Springer, 2008:236-243.
[72]
Ahonen T, Rahtu E, Ojansivu V, et al. Recognition of blurred faces using local phase quantization[C]//Proceedings of 19th International Conference on Pattern Recognition. Tampa, USA: Institute of Electrical and Electronics Engineers Inc, 2008:1-4.
[73]
Chan C H, Tahir M A, Kittler J, et al. Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5):1164-1177.
[74]
Heikkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.
[75]
Gupta R, Patil H, Mittal A. Robust order-based methods for feature description[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010: 334-341.
[76]
Zeng H, Mu Z C, Wang X Q. A robust method for local image feature region description[J]. Acta Automatica Sinica, 2011, 37(6):658-664.[曾慧, 穆志纯, 王秀青. 一种鲁棒的图像局部特征区域的描述方法[J]. 自动化学报, 2011, 37(6):658-664]
[77]
Chen J, Shan S G, He C, et al. WLD: a robust local image descriptor [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1705-1720.
[78]
Gong D Y, Li S T, Xiang Y. Face recognition using weber local descriptors[C]//Proceedings of First Asian Conference on Pattern Recognition. Beijing, China: IEEE, 2011:589-592.
[79]
Hussain M, Muhammad G, Bebis G. Face recognition using multiscale and spatially enhanced weber law descriptor[C]//Proceedings of the 8th International Conference on Signal Image Technology and Internet Based Systems. Naples, Italy: IEEE, 2012:85-89.
[80]
Muhammad G, Hussain M, Alenezy F, et al. Race recognition from face images using Weber local descriptor[C]//Proceedings of the 19th International Conference on Systems, Signals and Image Processing. Vienna, Austria: IEEE, 2012:421-424.
[81]
Ullah I, Hussain M, Muhammad G. Gender recognition from face images with local WLD descriptor[C]//Proceedings of the 19th International Conference on Systems, Signals and Image Processing. Vienna, Austria: IEEE, 2012:417-420.
[82]
Alahi A, Ortiz R, Vandergheynst P. FREAK: fast retina keypoint[C]//Proceedings of the IEEE International Conference on Computer Vision. Providence, USA: IEEE, 2012:510-517.
[83]
Ziegler A, Christiansen E, Kriegman D, et al. Locally uniform comparison image descriptor [C]//Proceedings of Neural Information Processing Systems. Nevada, USA: Neural Information Processing System Foundation, 2012:1-9.
[84]
Bo L, Ren X, Fox D. Kernel descriptors for visual recognition [C]//Proceedings of Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc, 2010: 244-252.
[85]
Wang P, Wang J D, Zeng G, et al. Supervised kernel descriptor for visual recognition [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013:2858-2865.
[86]
Ren X, Bo L, Fox D. Rgb-(d) scene labeling: Features and algorithms [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012: 2759-2766.
[87]
Natarajan P, Wu S, Vitaladevuni S N P, et al. Multi-channel shape-flow kernel descriptors for robust video event detection and retrieval [C]//Proceedings of the 12th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2012:301-314.
[88]
Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection and classification[C]//Proceedings of 9th European Conf. Computer Vision. Berlin Heidelberg: Springer, 2006:589-600.
[89]
Tuzel O, Porikli F, Meer P. Pedestrian detection via classification on riemannian manifolds [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10):1713-1727.
[90]
Pang Y W, Yuan Y, Li X L. Gabor-based region covariance matrices for face recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(7):989-993.
[91]
Paisitkriangkrai S, Shen C H, Zhang J. Fast pedestrian detection using a cascade of boosted covariance features[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2008, 18(8):1140-1151.
[92]
Heikkila J. Pattern matching with affine moment descriptors [J]. Pattern Recognition, 2004, 37(9): 1825-1834.
[93]
Chen Z, Sun. S K A Zernike Moment Phase-Based Descriptor for Local Image Representation and Matching [J]. IEEE Trans. on Image Process, 2010, 19(1):205-219.
[94]
Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5):489-497.
[95]
Winder S, Hua G, Brown M. Picking the best DAISY [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009:178-185.
[96]
Brown M, Hua G, Winder S. Discriminative learning of local image descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1):43-57.
[97]
Simonyan K, Vedaldi A, Zisserman A. Learning local feature descriptors using convex optimisation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1573-1585.
[98]
Trzcinski T, Christoudias M, Fua P, et al. Boosting binary keypoint descriptors[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013: 2874-2881.
[99]
Bosch A, Zisserman A, Munoz, X. Scene classification using a hybrid generative/discriminative approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712-727.
[100]
Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376.
[101]
Agarwal S, Snavely N, Simon I, et al. Building rome on a day[C]//Proceedings of 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 368-381.
[102]
Zhang G F, Jia J Y, Wong T T, et al. Consistent depth maps recovery from a video sequence[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31(6):974-988.
[103]
Nister D, Stewenius H. Scalable recognition with a vocabulary tree[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006:2161-2168.
[104]
Wang J, Yang J, Yu K, et al. Locality constrained linear coding for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010: 3360-3367.
[105]
Zhang J G, Marszalek M, Lazebnik S, et al. Local features and kernels for classification of texture and object categories: a comprehensive study [J]. International Journal of Computer Vision, 2007, 73(2):213-238.
[106]
Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local affine regions [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(8):1265-1278.
[107]
Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[108]
Jegou H, Douze M, Schmid C. Improving bag-of-features for large scale image search [J]. International Journal of Computer Vision, 2010, 87(3):316-336.
[109]
Jegou H, Douze M, Schmid C. Product quantization for nearest neighbor search [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33(1):117-128.
[110]
Jegou H, Perronnin F, Douze M, et al. Aggregating local image descriptors into compact codes [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(9):1704-1716.
[111]
Se S, Lowe D G, Little G J. Vision-based global localization and mapping for mobile robots [J]. IEEE Transactions on Robotics, 2005, 21(3):364-375.
[112]
Angeli A, Filliat D, Doncieux S. A fast and incremental method for loop-closure detection using bags of visual words [J]. IEEE Transactions on Robotics, 2008, 24(5):1027-1037.
[113]
Cummins M, Newman P. Appearance-only SLAM at large scale with FAB-MAP 2.0 [J]. International Journal of Robotics Research, 2011, 30(9):1100-1123.
[114]
Brown M, Lowe D G. Automatic panoramic image stitching using invariant features [J]. International Journal of Computer Vision, 2007, 74(1):59-73.
[115]
Gupta R, Mittal A. SMD: a locally stable monotonic change invariant feature descriptor[C]//Proceedings of the 10th European Conf. Computer Vision. Berlin Heidelberg: Springer, 2008:265-277.
[116]
Gupta R, Mittal A. Illumination and affine-invariant point matching using an ordinal approach[C]//Proceedings of IEEE 11th International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007:1-8.
[117]
Tang F, Lim S H, Change N L, et al. A novel feature descriptor invariant to complex brightness changes[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009: 2631-2638.
[118]
Fan B, Wu F C, Hu Z Y. Rotationally invariant descriptors using intensity order pooling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 2031-2045.
[119]
Wang Z H, Fan B, Wu F C. Local intensity order pattern for feature description[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 603-610.
[120]
Kim B, Yoo H, Sohn K. Exact order based feature descriptor for illumination robust image matching [J]. Pattern Recognition, 2013, 46(12): 3268-3278.
[121]
Calonder M, Lepetit V, Strecha C, et al. Brief: binary robust independent elementary features [C]//Proceedings of the 11th European conference on Computer vision. Berlin Heidelberg: Springer, 2010: 778-792.
[122]
Calonder M, Lepetit V, Ozuysal M, et al. BRIEF: computing a local binary descriptor very fast[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1281-1298.
[123]
Galvezlopez D, Tardos J D. Bags of binary words for fast place recognition in image sequences[J]. IEEE Transactions on Robotics, 2012, 28(5):1188-1197.
[124]
Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2564-2571.
[125]
Leutenegger S, Chli M, Siegwart R. BRISK: binary robust invariant scalable keypoints[C]//Proceedings of the IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2548-2555.
[126]
Heinly J, Dunn E, Frahm J M. Comparative evaluation of binary features[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2012:7-13.
[127]
Zhang D, Lu G. Review of shape representation and description techniques [J]. Pattern Recognition, 2004, 37(1):1-19.
[128]
Trzcinski T, Christoudias M, Lepetit V, et al. Learning image descriptors with the boosting-trick[C]//Proceedings of Neural Information Processing Systems. Nevada, USA: Neural Information Processing System Foundation, 2012:278-286.
[129]
Mikolajczyk K, Matas J. Improving descriptors for fast tree matching by optimal linear projection [C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007:1-8.
[130]
Hua G, Brown M, Winder S. Discriminant embedding for local image descriptors [C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007:1-8.
[131]
Cai H P, Mikolajczyk K, Matas J. Learning linear discriminant projections for dimensionality reduction of image descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(2): 338-352.
[132]
Xu X M, Yang D, Zhang X H, et al. The algorithm of descriptor based on locality preserving projections [J]. Acta Automatica Sinica, 2008, 34(9):1174-1177.[徐小明, 杨丹, 张小洪, 等. 基于局部不变映射的特征描述器算法 [J]. 自动化学报, 2008, 34(9):1174-1177]
[133]
Strecha C, Bronstein A M, Bronstein M M, et al. LDAHash: improved matching with smaller descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 66-78.
[134]
Trzcinski T, Lepetit V. Efficient discriminative projections for compact binary descriptors[C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer Berlin Heidelberg, 2012:7-13.